Wave-particle energy transfer directly observed in an ion cyclotron wave

Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-06, Vol.650, p.A10
Hauptverfasser: Vech, D., Martinović, M. M., Klein, K. G., Malaspina, D. M., Bowen, T. A., Verniero, J. L., Paulson, K., Dudok de Wit, T., Kasper, J. C., Huang, J., Stevens, M. L., Case, A. W., Korreck, K., Mozer, F. S., Goodrich, K. A., Bale, S. D., Whittlesey, P. L., Livi, R., Larson, D. E., Pulupa, M., Bonnell, J., Harvey, P., Goetz, K., MacDowall, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods. Aims. We present a novel approach to study wave-particle energy exchange with PSP. Methods. We used the Flux Angle operation mode of the Solar Probe Cup in conjunction with the electric field measurements and present a case study when the Flux Angle mode measured the direct interaction of the proton velocity distribution with an ion cyclotron wave. Results. Our results suggest that the energy transfer from fields to particles on the timescale of a cyclotron period is equal to approximately 3–6% of the electromagnetic energy flux. This rate is consistent with the hypothesis that the ion cyclotron wave was locally generated in the solar wind.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/202039296