5000 yr of paleoseismicity along the southern Dead Sea fault

The 1000-km-long left-lateral Dead Sea fault is a major tectonic structure of the oriental Mediterranean basin, bounding the Arabian Plate to the west. The fault is located in a region with an exceptionally long and rich historical record, allowing to document historical seismicity catalogues with u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2015-07, Vol.202 (1), p.313-327
Hauptverfasser: Klinger, Y., Le Béon, M., Al-Qaryouti, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 1000-km-long left-lateral Dead Sea fault is a major tectonic structure of the oriental Mediterranean basin, bounding the Arabian Plate to the west. The fault is located in a region with an exceptionally long and rich historical record, allowing to document historical seismicity catalogues with unprecedented level of details. However, if the earthquake time series is well documented, location and lateral extent of past earthquakes remain often difficult to establish, if only based on historical testimonies. We excavated a palaeoseismic trench in a site located in a kilometre-size extensional jog, south of the Dead Sea, in the Wadi Araba. Based on the stratigraphy exposed in the trench, we present evidence for nine earthquakes that produced surface ruptures during a time period spanning 5000 yr. Abundance of datable material allows us to tie the five most recent events to historical earthquakes with little ambiguities, and to constrain the possible location of these historical earthquakes. The events identified at our site are the 1458 C.E., 1212 C.E., 1068 C.E., one event during the 8th century crisis, and the 363 C.E. earthquake. Four other events are also identified, which correlation with historical events remains more speculative. The magnitude of earthquakes is difficult to assess based on evidence at one site only. The deformation observed in the excavation, however, allows discriminating between two classes of events that produced vertical deformation with one order of amplitude difference, suggesting that we could distinguish earthquakes that started/stopped at our site from earthquakes that potentially ruptured most of the Wadi Araba fault. The time distribution of earthquakes during the past 5000 yr is uneven. The early period shows little activity with return interval of ∼500 yr or longer. It is followed by a ∼1500-yr-long period with more frequent events, about every 200 yr. Then, for the past ∼550 yr, the fault has switched back to a quieter mode with no significant earthquake along the entire southern part of the Dead Sea fault, between the Dead Sea and the Gulf of Aqaba. We computed the Coefficient of Variation for our site and three other sites along the Dead Sea fault, south of Lebanon, to compare time distribution of earthquakes at different locations along the fault. With one exception at a site located next to Lake Tiberias, the three other sites are consistent to show some temporal clustering at the scale of few thousands years.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggv134