Water Drainage in Double-Porosity Soils: Experiments and Micro–Macro Modeling

This paper presents the experimental validation of a macroscopic model of unsaturated flow in double-porosity soils, which was developed using the asymptotic homogenization method. The model was implemented into a code which enables micro–macro coupled calculations of macroscopically one-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2008-02, Vol.134 (2), p.231-243
Hauptverfasser: Lewandowska, Jolanta, Tran Ngoc, Tien Dung, Vauclin, Michel, Bertin, Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the experimental validation of a macroscopic model of unsaturated flow in double-porosity soils, which was developed using the asymptotic homogenization method. The model was implemented into a code which enables micro–macro coupled calculations of macroscopically one-dimensional and microscopically three-dimensional problems. A series of drainage experiments were carried out in a column filled with a double porosity medium. The porous medium is composed of Hostun sand and porous spheres made of sintered clay, periodically distributed in the sand. The characteristic pores sizes of the two media differ by two orders of magnitude. During the experiments the water content evolution inside the column, the capillary pressure, and the flux at the bottom of the column were measured. The numerical simulations results showed a good agreement with the experimental data, confirming the predictive ability of the model. The experimental and numerical evidence of the influence of the microporous inclusions on the flow dynamics (flux retardation, water retention in the microporosity), is clearly shown.
ISSN:1090-0241
1943-5606
DOI:10.1061/(ASCE)1090-0241(2008)134:2(231)