Driving Role of Interleukin‐2–Related Regulatory CD4 + T Cell Deficiency in the Development of Lung Fibrosis and Vascular Remodeling in a Mouse Model of Systemic Sclerosis

Objective. Systemic sclerosis (SSc) is a debilitating autoimmune disease characterized by severe lung outcomes resulting in reduced life expectancy. Fra-2-transgenic mice offer the opportunity to decipher the relationships between the immune system and lung fibrosis. This study was undertaken to inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthritis & rheumatology (Hoboken, N.J.) N.J.), 2022-08, Vol.74 (8), p.1387-1398
Hauptverfasser: Frantz, Camelia, Cauvet, Anne, Durand, Aurélie, Gonzalez, Virginie, Pierre, Rémi, Do Cruzeiro, Marcio, Bailly, Karine, Andrieu, Muriel, Orvain, Cindy, Avouac, Jérôme, Ottaviani, Mina, Thuillet, Raphaël, Tu, Ly, Guignabert, Christophe, Lucas, Bruno, Auffray, Cédric, Allanore, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. Systemic sclerosis (SSc) is a debilitating autoimmune disease characterized by severe lung outcomes resulting in reduced life expectancy. Fra-2-transgenic mice offer the opportunity to decipher the relationships between the immune system and lung fibrosis. This study was undertaken to investigate whether the Fra-2-transgenic mouse lung phenotype may result from an imbalance between the effector and regulatory arms in the CD4+ T cell compartment. Methods. We first used multicolor flow cytometry to extensively characterize homeostasis and the phenotype of peripheral CD4+ T cells from Fra-2-transgenic mice and control mice. We then tested different treatments for their effectiveness in restoring CD4+ Treg cell homeostasis, including adoptive transfer of Treg cells and treatment with low-dose interleukin-2 (IL-2). Results. Fra-2-transgenic mice demonstrated a marked decrease in the proportion and absolute number of peripheral Treg cells that preceded accumulation of activated, T helper cell type 2-polarized, CD4+ T cells. This defect in Treg cell homeostasis was derived from a combination of mechanisms including impaired generation of these cells in both the thymus and the periphery. The impaired ability of peripheral conventional CD4+ T cells to produce IL-2 may greatly contribute to Treg cell deficiency in Fra-2-transgenic mice. Notably, adoptive transfer of Treg cells, low-dose IL-2 therapy, or combination therapy changed the phenotype of Fra-2-transgenic mice, resulting in a significant reduction in pulmonary parenchymal fibrosis and vascular remodeling in the lungs. Conclusion. Immunotherapies for restoring Treg cell homeostasis could be relevant in SSc. An intervention based on low-dose IL-2 injections, as is already proposed in other autoimmune diseases, could be the most suitable treatment modality for restoring Treg cell homeostasis for future research.
ISSN:2326-5205
2326-5191
DOI:10.1002/art.42111