New Insights into the Epigenetic Activities of Natural Compounds
Histone deacetylases (HDACs) are a family of enzymes found in bacteria, fungi, plants, and animals that profoundly affect cellular function by catalyzing the removal of acetyl groups from -N-acetylated lysine residues of various protein substrates including histones, transcription factors, alpha-tub...
Gespeichert in:
Veröffentlicht in: | OBM Genetics 2018-08, Vol.2 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Histone deacetylases (HDACs) are a family of enzymes found in bacteria, fungi, plants, and animals that profoundly affect cellular function by catalyzing the removal of acetyl groups from -N-acetylated lysine residues of various protein substrates including histones, transcription factors, alpha-tubulin, and nuclear importers. Although the precise roles of HDAC isoforms in cellular function are not yet completely understood, inhibition of HDAC activity has emerged as a promising approach for reversing the aberrant epigenetic states associated with cancer and other chronic diseases. Potent new isoform-selective HDAC inhibitors would therefore help expand our understanding of the HDAC enzymes and represent attractive lead compounds for drug design, especially if combined with high-resolution structural analyses of such inhibitors to shed light on the three-dimensional pharmacophoric features necessary for the future design of more potent and selective compounds. Here we present structural and functional analyses of a series of beta-amino-acid-containing HDAC inhibitors inspired by cyclic tetrapeptide natural products. To survey a diverse ensemble of pharmacophoric configurations, we systematically varied the position of the beta-amino acid, amino acid chirality, functionalization of the Zn(2+)-coordinating amino acid side chain, and alkylation of the backbone amide nitrogen atoms around the macrocycle. In many cases, the compounds were a single conformation in solution and exhibited potent activities against a number of HDAC isoforms as well as effective antiproliferative and cytotoxic activities against human tumor cells. High-resolution NMR solution structures were determined for a selection of the inhibitors, providing a useful means of correlating detailed structural information with potency. The structure-based approach described here is expected to furnish valuable insights toward the future design of more selective HDAC inhibitors. |
---|---|
ISSN: | 2577-5790 |
DOI: | 10.21926/obm.genet.1803029 |