Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue
Parkinson’s disease is a disabling neurodegenerative disorder of unknown etiology characterized by a predominant and progressive loss of dopaminergic neurons in the substantia nigra. Recent findings suggest that impaired energy metabolism plays an important role in the pathogenesis of this disorder....
Gespeichert in:
Veröffentlicht in: | Neuroscience 2005, Vol.133 (3), p.701-713 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parkinson’s disease is a disabling neurodegenerative disorder of unknown etiology characterized by a predominant and progressive loss of dopaminergic neurons in the substantia nigra. Recent findings suggest that impaired energy metabolism plays an important role in the pathogenesis of this disorder. The endogenously occurring guanidino compound creatine is a substrate for mitochondrial and cytosolic creatine kinases. Creatine supplementation improves the function of the creatine kinase/phosphocreatine system by increasing cellular creatine and phosphocreatine levels and the rate of ATP resynthesis. In addition, mitochondrial creatine kinase together with high cytoplasmic creatine levels inhibit mitochondrial permeability transition, a major step in early apoptosis. In the present study, we analyzed the effects of externally added creatine on the survival and morphology of dopaminergic neurons and also addressed its neuroprotective properties in primary cultures of E14 rat ventral mesencephalon. Chronic administration of creatine [5mM] for 7 days significantly increased survival (by 1.32-fold) and soma size (by 1.12-fold) of dopaminergic neurons, while having no effect on other investigated morphological parameters. Most importantly, concurrent creatine exerted significant neuroprotection for dopaminergic neurons against neurotoxic insults induced by serum and glucose deprivation (
P |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2005.03.004 |