MRS quality assessment in a multicentre study on MRS-based classification of brain tumours

This paper reports on quality assessment of MRS in the European Union‐funded multicentre project INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance; http://azizu.uab.es/INTERPRET), which has developed brain tumour classification software using in vivo proton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2008-02, Vol.21 (2), p.148-158
Hauptverfasser: van der Graaf, Marinette, Julià-Sapé, Margarida, Howe, Franklyn A., Ziegler, Anne, Majós, Carles, Moreno-Torres, Angel, Rijpkema, Mark, Acosta, Dionisio, Opstad, Kirstie S., van der Meulen, Yvonne M., Arús, Carles, Heerschap, Arend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 2
container_start_page 148
container_title NMR in biomedicine
container_volume 21
creator van der Graaf, Marinette
Julià-Sapé, Margarida
Howe, Franklyn A.
Ziegler, Anne
Majós, Carles
Moreno-Torres, Angel
Rijpkema, Mark
Acosta, Dionisio
Opstad, Kirstie S.
van der Meulen, Yvonne M.
Arús, Carles
Heerschap, Arend
description This paper reports on quality assessment of MRS in the European Union‐funded multicentre project INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance; http://azizu.uab.es/INTERPRET), which has developed brain tumour classification software using in vivo proton MR spectra. The quality assessment consisted of both MR system quality assurance (SQA) and quality control (QC) of spectral data acquired from patients and healthy volunteers. The system performance of the MR spectrometers at all participating centres was checked bimonthly by a short measurement protocol using a specially designed INTERPRET phantom. In addition, a more extended SQA protocol was performed yearly and after each hardware or software upgrade. To compare the system performance for in vivo measurements, each centre acquired MR spectra from the brain of five healthy volunteers. All MR systems fulfilled generally accepted minimal system performance for brain MRS during the entire data acquisition period. The QC procedure of the MR spectra in the database comprised automatic determination of the signal‐to‐noise ratio (SNR) in a water‐suppressed spectrum and of the line width of the water resonance (water band width, WBW) in the corresponding non‐suppressed spectrum. Values of SNR > 10 and WBW 
doi_str_mv 10.1002/nbm.1172
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00381415v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70290076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-8327a4d2a7218502ec43510623bec6a22a5f699dcf4a808fc00e525c0fd007b03</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNY7LUK_gLJSlw47cmZZJIsa9FWvL2CVpS7CZlMBqPz0SYz6v33ptyhrkpX4ZDnfXjhJeQFg2MGgCdD3R8zJvERWTHQumBc42OyAi2wKLmCQ_I0pZ8AoHiJT8ghk1wozdSKbC8_f6E3s-3CtKM2JZ9S74eJhoFa2s_dFFw-o6dpmpsdHQeaA0Vtk2-o63IgtMHZKeSPsaV1tDk4zf04x_SMHLS2S_758h6Rr-_fXZ1dFOtP5x_OTteF40JjoUqUljdoJTIlAL3jpWBQYVl7V1lEK9pK68a13CpQrQPwAoWDtgGQNZRH5M3e-8N25jqG3sadGW0wF6drE4bkY28ASsU4E79Zxl_t8es43sw-TaYPyfmus4Mf52QkoM7i6kEQc0mJlczg6z3o4phS9O1dCwbmdh-T9zG3-2T05eKc6943_8FlkAwUe-BP6PzuXpHZvL1chAsf0uT_3vE2_jK5mRTm2-bcbLffP2624spA-Q8POKdl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21067267</pqid></control><display><type>article</type><title>MRS quality assessment in a multicentre study on MRS-based classification of brain tumours</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>van der Graaf, Marinette ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Ziegler, Anne ; Majós, Carles ; Moreno-Torres, Angel ; Rijpkema, Mark ; Acosta, Dionisio ; Opstad, Kirstie S. ; van der Meulen, Yvonne M. ; Arús, Carles ; Heerschap, Arend</creator><creatorcontrib>van der Graaf, Marinette ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Ziegler, Anne ; Majós, Carles ; Moreno-Torres, Angel ; Rijpkema, Mark ; Acosta, Dionisio ; Opstad, Kirstie S. ; van der Meulen, Yvonne M. ; Arús, Carles ; Heerschap, Arend</creatorcontrib><description>This paper reports on quality assessment of MRS in the European Union‐funded multicentre project INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance; http://azizu.uab.es/INTERPRET), which has developed brain tumour classification software using in vivo proton MR spectra. The quality assessment consisted of both MR system quality assurance (SQA) and quality control (QC) of spectral data acquired from patients and healthy volunteers. The system performance of the MR spectrometers at all participating centres was checked bimonthly by a short measurement protocol using a specially designed INTERPRET phantom. In addition, a more extended SQA protocol was performed yearly and after each hardware or software upgrade. To compare the system performance for in vivo measurements, each centre acquired MR spectra from the brain of five healthy volunteers. All MR systems fulfilled generally accepted minimal system performance for brain MRS during the entire data acquisition period. The QC procedure of the MR spectra in the database comprised automatic determination of the signal‐to‐noise ratio (SNR) in a water‐suppressed spectrum and of the line width of the water resonance (water band width, WBW) in the corresponding non‐suppressed spectrum. Values of SNR &gt; 10 and WBW &lt; 8 Hz at 1.5 T were determined empirically as conservative threshold levels required for spectra to be of acceptable quality. These thresholds only hold for SNR and WBW values using the definitions and data processing described in this article. A final QC check consisted of visual inspection of each clinically validated water‐suppressed metabolite spectrum by two, or, in the case of disagreement, three, experienced MR spectroscopists, to detect artefacts such as large baseline distortions, exceptionally broadened metabolite peaks, insufficient removal of the water line, large phase errors, and signals originating from outside the voxel. In the end, 10% of 889 spectra with completed spectroscopic judgement were discarded. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.1172</identifier><identifier>PMID: 17458918</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>1H MRS ; Bioengineering ; Brain Neoplasms ; Brain Neoplasms - classification ; Brain Neoplasms - diagnosis ; Cancer ; Clinical Protocols ; Clinical Protocols - standards ; Databases, Factual ; Databases, Factual - standards ; Equipment Failure Analysis ; European Union ; Expert Systems ; Humans ; Imaging ; Life Sciences ; Magnetic Resonance Spectroscopy ; Magnetic Resonance Spectroscopy - instrumentation ; Magnetic Resonance Spectroscopy - standards ; MR spectra ; Multicenter Studies as Topic ; Multicenter Studies as Topic - standards ; multicentre study ; Pattern Recognition, Automated ; Pattern Recognition, Automated - standards ; phantom ; Phantoms, Imaging ; Program Evaluation ; Protons ; quality assessment ; Quality Control ; Reference Standards ; Reproducibility of Results ; Software ; system quality assurance ; Water ; Water - analysis</subject><ispartof>NMR in biomedicine, 2008-02, Vol.21 (2), p.148-158</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-8327a4d2a7218502ec43510623bec6a22a5f699dcf4a808fc00e525c0fd007b03</citedby><cites>FETCH-LOGICAL-c4592-8327a4d2a7218502ec43510623bec6a22a5f699dcf4a808fc00e525c0fd007b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.1172$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.1172$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17458918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00381415$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Graaf, Marinette</creatorcontrib><creatorcontrib>Julià-Sapé, Margarida</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Ziegler, Anne</creatorcontrib><creatorcontrib>Majós, Carles</creatorcontrib><creatorcontrib>Moreno-Torres, Angel</creatorcontrib><creatorcontrib>Rijpkema, Mark</creatorcontrib><creatorcontrib>Acosta, Dionisio</creatorcontrib><creatorcontrib>Opstad, Kirstie S.</creatorcontrib><creatorcontrib>van der Meulen, Yvonne M.</creatorcontrib><creatorcontrib>Arús, Carles</creatorcontrib><creatorcontrib>Heerschap, Arend</creatorcontrib><title>MRS quality assessment in a multicentre study on MRS-based classification of brain tumours</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>This paper reports on quality assessment of MRS in the European Union‐funded multicentre project INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance; http://azizu.uab.es/INTERPRET), which has developed brain tumour classification software using in vivo proton MR spectra. The quality assessment consisted of both MR system quality assurance (SQA) and quality control (QC) of spectral data acquired from patients and healthy volunteers. The system performance of the MR spectrometers at all participating centres was checked bimonthly by a short measurement protocol using a specially designed INTERPRET phantom. In addition, a more extended SQA protocol was performed yearly and after each hardware or software upgrade. To compare the system performance for in vivo measurements, each centre acquired MR spectra from the brain of five healthy volunteers. All MR systems fulfilled generally accepted minimal system performance for brain MRS during the entire data acquisition period. The QC procedure of the MR spectra in the database comprised automatic determination of the signal‐to‐noise ratio (SNR) in a water‐suppressed spectrum and of the line width of the water resonance (water band width, WBW) in the corresponding non‐suppressed spectrum. Values of SNR &gt; 10 and WBW &lt; 8 Hz at 1.5 T were determined empirically as conservative threshold levels required for spectra to be of acceptable quality. These thresholds only hold for SNR and WBW values using the definitions and data processing described in this article. A final QC check consisted of visual inspection of each clinically validated water‐suppressed metabolite spectrum by two, or, in the case of disagreement, three, experienced MR spectroscopists, to detect artefacts such as large baseline distortions, exceptionally broadened metabolite peaks, insufficient removal of the water line, large phase errors, and signals originating from outside the voxel. In the end, 10% of 889 spectra with completed spectroscopic judgement were discarded. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>1H MRS</subject><subject>Bioengineering</subject><subject>Brain Neoplasms</subject><subject>Brain Neoplasms - classification</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Cancer</subject><subject>Clinical Protocols</subject><subject>Clinical Protocols - standards</subject><subject>Databases, Factual</subject><subject>Databases, Factual - standards</subject><subject>Equipment Failure Analysis</subject><subject>European Union</subject><subject>Expert Systems</subject><subject>Humans</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetic Resonance Spectroscopy - instrumentation</subject><subject>Magnetic Resonance Spectroscopy - standards</subject><subject>MR spectra</subject><subject>Multicenter Studies as Topic</subject><subject>Multicenter Studies as Topic - standards</subject><subject>multicentre study</subject><subject>Pattern Recognition, Automated</subject><subject>Pattern Recognition, Automated - standards</subject><subject>phantom</subject><subject>Phantoms, Imaging</subject><subject>Program Evaluation</subject><subject>Protons</subject><subject>quality assessment</subject><subject>Quality Control</subject><subject>Reference Standards</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>system quality assurance</subject><subject>Water</subject><subject>Water - analysis</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFTEUhoNY7LUK_gLJSlw47cmZZJIsa9FWvL2CVpS7CZlMBqPz0SYz6v33ptyhrkpX4ZDnfXjhJeQFg2MGgCdD3R8zJvERWTHQumBc42OyAi2wKLmCQ_I0pZ8AoHiJT8ghk1wozdSKbC8_f6E3s-3CtKM2JZ9S74eJhoFa2s_dFFw-o6dpmpsdHQeaA0Vtk2-o63IgtMHZKeSPsaV1tDk4zf04x_SMHLS2S_758h6Rr-_fXZ1dFOtP5x_OTteF40JjoUqUljdoJTIlAL3jpWBQYVl7V1lEK9pK68a13CpQrQPwAoWDtgGQNZRH5M3e-8N25jqG3sadGW0wF6drE4bkY28ASsU4E79Zxl_t8es43sw-TaYPyfmus4Mf52QkoM7i6kEQc0mJlczg6z3o4phS9O1dCwbmdh-T9zG3-2T05eKc6943_8FlkAwUe-BP6PzuXpHZvL1chAsf0uT_3vE2_jK5mRTm2-bcbLffP2624spA-Q8POKdl</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>van der Graaf, Marinette</creator><creator>Julià-Sapé, Margarida</creator><creator>Howe, Franklyn A.</creator><creator>Ziegler, Anne</creator><creator>Majós, Carles</creator><creator>Moreno-Torres, Angel</creator><creator>Rijpkema, Mark</creator><creator>Acosta, Dionisio</creator><creator>Opstad, Kirstie S.</creator><creator>van der Meulen, Yvonne M.</creator><creator>Arús, Carles</creator><creator>Heerschap, Arend</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>200802</creationdate><title>MRS quality assessment in a multicentre study on MRS-based classification of brain tumours</title><author>van der Graaf, Marinette ; Julià-Sapé, Margarida ; Howe, Franklyn A. ; Ziegler, Anne ; Majós, Carles ; Moreno-Torres, Angel ; Rijpkema, Mark ; Acosta, Dionisio ; Opstad, Kirstie S. ; van der Meulen, Yvonne M. ; Arús, Carles ; Heerschap, Arend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-8327a4d2a7218502ec43510623bec6a22a5f699dcf4a808fc00e525c0fd007b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1H MRS</topic><topic>Bioengineering</topic><topic>Brain Neoplasms</topic><topic>Brain Neoplasms - classification</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Cancer</topic><topic>Clinical Protocols</topic><topic>Clinical Protocols - standards</topic><topic>Databases, Factual</topic><topic>Databases, Factual - standards</topic><topic>Equipment Failure Analysis</topic><topic>European Union</topic><topic>Expert Systems</topic><topic>Humans</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetic Resonance Spectroscopy - instrumentation</topic><topic>Magnetic Resonance Spectroscopy - standards</topic><topic>MR spectra</topic><topic>Multicenter Studies as Topic</topic><topic>Multicenter Studies as Topic - standards</topic><topic>multicentre study</topic><topic>Pattern Recognition, Automated</topic><topic>Pattern Recognition, Automated - standards</topic><topic>phantom</topic><topic>Phantoms, Imaging</topic><topic>Program Evaluation</topic><topic>Protons</topic><topic>quality assessment</topic><topic>Quality Control</topic><topic>Reference Standards</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>system quality assurance</topic><topic>Water</topic><topic>Water - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Graaf, Marinette</creatorcontrib><creatorcontrib>Julià-Sapé, Margarida</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Ziegler, Anne</creatorcontrib><creatorcontrib>Majós, Carles</creatorcontrib><creatorcontrib>Moreno-Torres, Angel</creatorcontrib><creatorcontrib>Rijpkema, Mark</creatorcontrib><creatorcontrib>Acosta, Dionisio</creatorcontrib><creatorcontrib>Opstad, Kirstie S.</creatorcontrib><creatorcontrib>van der Meulen, Yvonne M.</creatorcontrib><creatorcontrib>Arús, Carles</creatorcontrib><creatorcontrib>Heerschap, Arend</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Graaf, Marinette</au><au>Julià-Sapé, Margarida</au><au>Howe, Franklyn A.</au><au>Ziegler, Anne</au><au>Majós, Carles</au><au>Moreno-Torres, Angel</au><au>Rijpkema, Mark</au><au>Acosta, Dionisio</au><au>Opstad, Kirstie S.</au><au>van der Meulen, Yvonne M.</au><au>Arús, Carles</au><au>Heerschap, Arend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRS quality assessment in a multicentre study on MRS-based classification of brain tumours</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2008-02</date><risdate>2008</risdate><volume>21</volume><issue>2</issue><spage>148</spage><epage>158</epage><pages>148-158</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>This paper reports on quality assessment of MRS in the European Union‐funded multicentre project INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance; http://azizu.uab.es/INTERPRET), which has developed brain tumour classification software using in vivo proton MR spectra. The quality assessment consisted of both MR system quality assurance (SQA) and quality control (QC) of spectral data acquired from patients and healthy volunteers. The system performance of the MR spectrometers at all participating centres was checked bimonthly by a short measurement protocol using a specially designed INTERPRET phantom. In addition, a more extended SQA protocol was performed yearly and after each hardware or software upgrade. To compare the system performance for in vivo measurements, each centre acquired MR spectra from the brain of five healthy volunteers. All MR systems fulfilled generally accepted minimal system performance for brain MRS during the entire data acquisition period. The QC procedure of the MR spectra in the database comprised automatic determination of the signal‐to‐noise ratio (SNR) in a water‐suppressed spectrum and of the line width of the water resonance (water band width, WBW) in the corresponding non‐suppressed spectrum. Values of SNR &gt; 10 and WBW &lt; 8 Hz at 1.5 T were determined empirically as conservative threshold levels required for spectra to be of acceptable quality. These thresholds only hold for SNR and WBW values using the definitions and data processing described in this article. A final QC check consisted of visual inspection of each clinically validated water‐suppressed metabolite spectrum by two, or, in the case of disagreement, three, experienced MR spectroscopists, to detect artefacts such as large baseline distortions, exceptionally broadened metabolite peaks, insufficient removal of the water line, large phase errors, and signals originating from outside the voxel. In the end, 10% of 889 spectra with completed spectroscopic judgement were discarded. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17458918</pmid><doi>10.1002/nbm.1172</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2008-02, Vol.21 (2), p.148-158
issn 0952-3480
1099-1492
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00381415v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 1H MRS
Bioengineering
Brain Neoplasms
Brain Neoplasms - classification
Brain Neoplasms - diagnosis
Cancer
Clinical Protocols
Clinical Protocols - standards
Databases, Factual
Databases, Factual - standards
Equipment Failure Analysis
European Union
Expert Systems
Humans
Imaging
Life Sciences
Magnetic Resonance Spectroscopy
Magnetic Resonance Spectroscopy - instrumentation
Magnetic Resonance Spectroscopy - standards
MR spectra
Multicenter Studies as Topic
Multicenter Studies as Topic - standards
multicentre study
Pattern Recognition, Automated
Pattern Recognition, Automated - standards
phantom
Phantoms, Imaging
Program Evaluation
Protons
quality assessment
Quality Control
Reference Standards
Reproducibility of Results
Software
system quality assurance
Water
Water - analysis
title MRS quality assessment in a multicentre study on MRS-based classification of brain tumours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRS%20quality%20assessment%20in%20a%20multicentre%20study%20on%20MRS-based%20classification%20of%20brain%20tumours&rft.jtitle=NMR%20in%20biomedicine&rft.au=van%20der%20Graaf,%20Marinette&rft.date=2008-02&rft.volume=21&rft.issue=2&rft.spage=148&rft.epage=158&rft.pages=148-158&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.1172&rft_dat=%3Cproquest_hal_p%3E70290076%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21067267&rft_id=info:pmid/17458918&rfr_iscdi=true