Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest: Syk activates p53 signaling pathway

Loss of tumor-suppressive pathways that control cellular senescence is a crucial step in malignant transformation. Spleen tyrosine kinase (Syk) is a cytoplasmic tyrosine kinase that has been recently implicated in tumor suppression of melanoma, a deadly skin cancer derived from pigment-producing mel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2009-04, Vol.69 (7), p.2748-56
Hauptverfasser: Bailet, Olivier, Fenouille, Nina, Abbe, Patricia, Robert, Guillaume, Rocchi, Stéphane, Gonthier, Nadège, Denoyelle, Christophe, Ticchioni, Michel, Ortonne, Jean-Paul, Ballotti, Robert, Deckert, Marcel, Tartare-Deckert, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loss of tumor-suppressive pathways that control cellular senescence is a crucial step in malignant transformation. Spleen tyrosine kinase (Syk) is a cytoplasmic tyrosine kinase that has been recently implicated in tumor suppression of melanoma, a deadly skin cancer derived from pigment-producing melanocytes. However, the mechanism by which Syk suppresses melanoma growth remains unclear. Here, we report that reexpression of Syk in melanoma cells induces a p53-dependent expression of the cyclin-dependent kinase (cdk) inhibitor p21 and a senescence program. We first observed that Syk expression is lost in a subset of melanoma cell lines, primarily by DNA methylation-mediated gene silencing and restored after treatment with the demethylating agent 5-aza-2-deoxycytidine. We analyzed the significance of epigenetic inactivation of Syk and found that reintroduction of Syk in melanoma cells dramatically reduces clonogenic survival and three-dimensional tumor spheroid growth and invasion. Remarkably, melanoma cells reexpressing Syk display hallmarks of senescent cells, including reduction of proliferative activity and DNA synthesis, large and flattened morphology, senescence-associated beta-galactosidase activity, and heterochromatic foci. This phenotype is accompanied by hypophosphorylated retinoblastoma protein (Rb) and accumulation of p21, which depends on functional p53. Our results highlight a new role for Syk tyrosine kinase in regulating cellular senescence and identify Syk-mediated senescence as a novel tumor suppressor pathway the inactivation of which may contribute to melanoma tumorigenicity.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-08-2690