PtdIns5P regulation through evolution: roles in membrane trafficking?

Phosphoinositides are lipid second messengers that are essential for many cellular processes, including signal transduction and cell compartmentalization. Among them, phosphatidylinositol 5-phosphate (PtdIns5P) is the least characterized, although several proteins involved in its regulation are impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biochemical sciences (Amsterdam. Regular ed.) 2008-10, Vol.33 (10), p.453-460
Hauptverfasser: Lecompte, Odile, Poch, Olivier, Laporte, Jocelyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphoinositides are lipid second messengers that are essential for many cellular processes, including signal transduction and cell compartmentalization. Among them, phosphatidylinositol 5-phosphate (PtdIns5P) is the least characterized, although several proteins involved in its regulation are implicated in human diseases. We studied the distribution of 32 PtdIns5P-metabolizing proteins in 39 eukaryotic genomes. Phylogenetic profiles identify four groups of co-evolving proteins, confirming known protein complexes and revealing new ones. The complexes comprise a phosphatase, a kinase and a regulator; this indicates that physical interactions between the three partners are necessary for the acute spatial regulation of PtdIns5P turnover. By examining PtdIns5P metabolism in this new perspective, we propose a role for PtdIns5P in membrane trafficking from late endosomal compartments to the plasma membrane.
ISSN:0968-0004
1362-4326
DOI:10.1016/j.tibs.2008.07.002