Improved activity of an actin-resistant DNase I variant on the cystic fibrosis airway secretions
In cystic fibrosis (CF), actin and DNA originating from inflammatory cells contribute to the thickness of airway secretions. Actin can bind to DNA-rich fibers and potently inhibit the enzymatic activity of rhDNase. The in vitro effects of the actin-resistant rhDNase variant (A114R) were analyzed and...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory and critical care medicine 2001-04, Vol.163 (5), p.1153-1157 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In cystic fibrosis (CF), actin and DNA originating from inflammatory cells contribute to the thickness of airway secretions. Actin can bind to DNA-rich fibers and potently inhibit the enzymatic activity of rhDNase. The in vitro effects of the actin-resistant rhDNase variant (A114R) were analyzed and compared with those of the wild-type rhDNase. Frozen and thawed CF airway secretions were incubated for 30 min with different concentrations (0.1, 0.5, 1, 5, or 10 microg/ml) of either actin-resistant rhDNase or wild-type rhDNase. We observed that both the wild-type and the actin-resistant rhDNase significantly decreased (p < 0.05 and p < 0.001, respectively) the airway secretion viscosity. The decrease in airway secretion viscosity was significant even at low concentrations (0.1 microg/ml) of the actin-resistant variant. Incubation with the actin-resistant variant resulted in a significant decrease (p < 0.02) of the airway secretion contact angle and cough transport. A significantly higher (p < 0.01) increase in contact angle and cough transport of airway secretions was observed at 10 microg/ml with the actin-resistant variant as compared with the wild-type rhDNase. The present study had demonstrated that the actin-resistant rhDNase variant (A114R) has an enhanced capacity to improve the physical properties and cough transport of airway secretions from patients with cystic fibrosis. |
---|---|
ISSN: | 1073-449X 1535-4970 |
DOI: | 10.1164/ajrccm.163.5.2005002 |