Evaluation of EEG localization methods using realistic simulations of interictal spikes

Performing an accurate localization of sources of interictal spikes from EEG scalp measurements is of particular interest during the presurgical investigation of epilepsy. The purpose of this paper is to study the ability of six distributed source localization methods to recover extended sources of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2006-02, Vol.29 (3), p.734-753
Hauptverfasser: Grova, C., Daunizeau, J., Lina, J.-M., Bénar, C.G., Benali, H., Gotman, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Performing an accurate localization of sources of interictal spikes from EEG scalp measurements is of particular interest during the presurgical investigation of epilepsy. The purpose of this paper is to study the ability of six distributed source localization methods to recover extended sources of activated cortex. Due to the frequent lack of a gold standard to evaluate source localization methods, our evaluation was performed in a controlled environment using realistic simulations of EEG interictal spikes, involving several anatomical locations with several spatial extents. Simulated data were corrupted by physiological EEG noise. Simulations involving pairs of sources with the same amplitude were also studied. In addition to standard validation criteria (e.g., geodesic distance or mean square error), we proposed an original criterion dedicated to assess detection accuracy, based on receiver operating characteristic (ROC) analysis. Six source localization methods were evaluated: the minimum norm, the minimum norm weighted by multivariate source prelocalization (MSP), cortical LORETA with or without additional minimum norm regularization, and two derivations of the maximum entropy on the mean (MEM) approach. Results showed that LORETA-based and MEM-based methods were able to accurately recover sources of different spatial extents, with the exception of sources in temporo-mesial and fronto-mesial regions. Several spurious sources were generated by those methods, however, whereas methods using the MSP always located very accurately the maximum of activity but not its spatial extent. These findings suggest that one should always take into account the results from different localization methods when analyzing real interictal spikes.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2005.08.053