Asymptotics of RNA shapes

RNA shapes, introduced by Giegerich et al. (2004), provide a useful classification of the branching complexity for RNA secondary structures. In this paper, we derive an exact value for the asymptotic number of RNA shapes, by relying on an elegant relation between non-ambiguous, context-free grammars...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2008-01, Vol.15 (1), p.31-63
Hauptverfasser: Lorenz, W A, Ponty, Y, Clote, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA shapes, introduced by Giegerich et al. (2004), provide a useful classification of the branching complexity for RNA secondary structures. In this paper, we derive an exact value for the asymptotic number of RNA shapes, by relying on an elegant relation between non-ambiguous, context-free grammars, and generating functions. Our results provide a theoretical upper bound on the length of RNA sequences amenable to probabilistic shape analysis (Steffen et al., 2006; Voss et al., 2006), under the assumption that any base can basepair with any other base. Since the relation between context-free grammars and asymptotic enumeration is simple, yet not well-known in bioinformatics, we give a self-contained presentation with illustrative examples. Additionally, we prove a surprising 1-to-1 correspondence between pi-shapes and Motzkin numbers.
ISSN:1066-5277
1557-8666
DOI:10.1089/cmb.2006.0153