Graph coloring on coarse grained multicomputers
We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed alg...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2003-09, Vol.131 (1), p.179-198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 1 |
container_start_page | 179 |
container_title | Discrete Applied Mathematics |
container_volume | 131 |
creator | Gebremedhin, Assefaw Hadish Lassous, Isabelle Guérin Gustedt, Jens Telle, Jan Arne |
description | We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph
G with at most
Δ+1 colors where
Δ is the maximum degree in
G. This algorithm is given in two variants:
randomized and
deterministic. We show that on a
p-processor CGM model the proposed algorithms require a parallel time of O(|
G|/
p) and a total work and overall communication cost of O(|
G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant. |
doi_str_mv | 10.1016/S0166-218X(02)00424-9 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00099526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X02004249</els_id><sourcerecordid>oai_HAL_inria_00099526v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeiNoEjdSZqmzZWMoZsw8EIF70Kajy3StSXpBv57s1XmpTfnA573HN4XoWsMDxgwm7zFwlKCy89bIHcAlNCUn6ARLguSsqLAp2h0RM7RRQhfAIDjNkKTuZfdOlFt3XrXrJK2ibP0wSQrL11jdLLZ1r1T7abb9saHS3RmZR3M1W8fo4_np_fZIl2-zl9m02WqKIE-zbilVrO8qjIGFirKdZlboipjK0NpVWpKLDdaK15aCZxTmkmmMk4YrUxuszG6H-6uZS067zbSf4tWOrGYLoVrvJMieuA8J2yHI50PtPJtCN7YowSD2GckDhmJfQACiDhkJHjU3Qy6TgYla-tlo1z4E-cYSIHzyD0OnImWd854EZQzjTLaeaN6oVv3z6cfyLJ7PQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graph coloring on coarse grained multicomputers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</creator><creatorcontrib>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</creatorcontrib><description>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph
G with at most
Δ+1 colors where
Δ is the maximum degree in
G. This algorithm is given in two variants:
randomized and
deterministic. We show that on a
p-processor CGM model the proposed algorithms require a parallel time of O(|
G|/
p) and a total work and overall communication cost of O(|
G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/S0166-218X(02)00424-9</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Coarse grained multicomputers ; Combinatorics ; Combinatorics. Ordered structures ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Graph algorithms ; Graph coloring ; Graph theory ; Mathematics ; Other ; Parallel algorithms ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2003-09, Vol.131 (1), p.179-198</ispartof><rights>2003 Elsevier B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</citedby><cites>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</cites><orcidid>0000-0002-9558-5536 ; 0000-0003-0779-1944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0166-218X(02)00424-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15102715$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00099526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebremedhin, Assefaw Hadish</creatorcontrib><creatorcontrib>Lassous, Isabelle Guérin</creatorcontrib><creatorcontrib>Gustedt, Jens</creatorcontrib><creatorcontrib>Telle, Jan Arne</creatorcontrib><title>Graph coloring on coarse grained multicomputers</title><title>Discrete Applied Mathematics</title><description>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph
G with at most
Δ+1 colors where
Δ is the maximum degree in
G. This algorithm is given in two variants:
randomized and
deterministic. We show that on a
p-processor CGM model the proposed algorithms require a parallel time of O(|
G|/
p) and a total work and overall communication cost of O(|
G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Coarse grained multicomputers</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Other</subject><subject>Parallel algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeiNoEjdSZqmzZWMoZsw8EIF70Kajy3StSXpBv57s1XmpTfnA573HN4XoWsMDxgwm7zFwlKCy89bIHcAlNCUn6ARLguSsqLAp2h0RM7RRQhfAIDjNkKTuZfdOlFt3XrXrJK2ibP0wSQrL11jdLLZ1r1T7abb9saHS3RmZR3M1W8fo4_np_fZIl2-zl9m02WqKIE-zbilVrO8qjIGFirKdZlboipjK0NpVWpKLDdaK15aCZxTmkmmMk4YrUxuszG6H-6uZS067zbSf4tWOrGYLoVrvJMieuA8J2yHI50PtPJtCN7YowSD2GckDhmJfQACiDhkJHjU3Qy6TgYla-tlo1z4E-cYSIHzyD0OnImWd854EZQzjTLaeaN6oVv3z6cfyLJ7PQ</recordid><startdate>20030906</startdate><enddate>20030906</enddate><creator>Gebremedhin, Assefaw Hadish</creator><creator>Lassous, Isabelle Guérin</creator><creator>Gustedt, Jens</creator><creator>Telle, Jan Arne</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9558-5536</orcidid><orcidid>https://orcid.org/0000-0003-0779-1944</orcidid></search><sort><creationdate>20030906</creationdate><title>Graph coloring on coarse grained multicomputers</title><author>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Coarse grained multicomputers</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Other</topic><topic>Parallel algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebremedhin, Assefaw Hadish</creatorcontrib><creatorcontrib>Lassous, Isabelle Guérin</creatorcontrib><creatorcontrib>Gustedt, Jens</creatorcontrib><creatorcontrib>Telle, Jan Arne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebremedhin, Assefaw Hadish</au><au>Lassous, Isabelle Guérin</au><au>Gustedt, Jens</au><au>Telle, Jan Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph coloring on coarse grained multicomputers</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2003-09-06</date><risdate>2003</risdate><volume>131</volume><issue>1</issue><spage>179</spage><epage>198</epage><pages>179-198</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph
G with at most
Δ+1 colors where
Δ is the maximum degree in
G. This algorithm is given in two variants:
randomized and
deterministic. We show that on a
p-processor CGM model the proposed algorithms require a parallel time of O(|
G|/
p) and a total work and overall communication cost of O(|
G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0166-218X(02)00424-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9558-5536</orcidid><orcidid>https://orcid.org/0000-0003-0779-1944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2003-09, Vol.131 (1), p.179-198 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00099526v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Coarse grained multicomputers Combinatorics Combinatorics. Ordered structures Computer Science Computer science control theory systems Exact sciences and technology Graph algorithms Graph coloring Graph theory Mathematics Other Parallel algorithms Sciences and techniques of general use Theoretical computing |
title | Graph coloring on coarse grained multicomputers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20coloring%20on%20coarse%20grained%20multicomputers&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Gebremedhin,%20Assefaw%20Hadish&rft.date=2003-09-06&rft.volume=131&rft.issue=1&rft.spage=179&rft.epage=198&rft.pages=179-198&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/S0166-218X(02)00424-9&rft_dat=%3Chal_cross%3Eoai_HAL_inria_00099526v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X02004249&rfr_iscdi=true |