Graph coloring on coarse grained multicomputers

We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2003-09, Vol.131 (1), p.179-198
Hauptverfasser: Gebremedhin, Assefaw Hadish, Lassous, Isabelle Guérin, Gustedt, Jens, Telle, Jan Arne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 1
container_start_page 179
container_title Discrete Applied Mathematics
container_volume 131
creator Gebremedhin, Assefaw Hadish
Lassous, Isabelle Guérin
Gustedt, Jens
Telle, Jan Arne
description We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed algorithms require a parallel time of O(| G|/ p) and a total work and overall communication cost of O(| G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.
doi_str_mv 10.1016/S0166-218X(02)00424-9
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00099526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X02004249</els_id><sourcerecordid>oai_HAL_inria_00099526v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeiNoEjdSZqmzZWMoZsw8EIF70Kajy3StSXpBv57s1XmpTfnA573HN4XoWsMDxgwm7zFwlKCy89bIHcAlNCUn6ARLguSsqLAp2h0RM7RRQhfAIDjNkKTuZfdOlFt3XrXrJK2ibP0wSQrL11jdLLZ1r1T7abb9saHS3RmZR3M1W8fo4_np_fZIl2-zl9m02WqKIE-zbilVrO8qjIGFirKdZlboipjK0NpVWpKLDdaK15aCZxTmkmmMk4YrUxuszG6H-6uZS067zbSf4tWOrGYLoVrvJMieuA8J2yHI50PtPJtCN7YowSD2GckDhmJfQACiDhkJHjU3Qy6TgYla-tlo1z4E-cYSIHzyD0OnImWd854EZQzjTLaeaN6oVv3z6cfyLJ7PQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graph coloring on coarse grained multicomputers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</creator><creatorcontrib>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</creatorcontrib><description>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed algorithms require a parallel time of O(| G|/ p) and a total work and overall communication cost of O(| G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/S0166-218X(02)00424-9</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Coarse grained multicomputers ; Combinatorics ; Combinatorics. Ordered structures ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Graph algorithms ; Graph coloring ; Graph theory ; Mathematics ; Other ; Parallel algorithms ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2003-09, Vol.131 (1), p.179-198</ispartof><rights>2003 Elsevier B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</citedby><cites>FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</cites><orcidid>0000-0002-9558-5536 ; 0000-0003-0779-1944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0166-218X(02)00424-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15102715$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00099526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebremedhin, Assefaw Hadish</creatorcontrib><creatorcontrib>Lassous, Isabelle Guérin</creatorcontrib><creatorcontrib>Gustedt, Jens</creatorcontrib><creatorcontrib>Telle, Jan Arne</creatorcontrib><title>Graph coloring on coarse grained multicomputers</title><title>Discrete Applied Mathematics</title><description>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed algorithms require a parallel time of O(| G|/ p) and a total work and overall communication cost of O(| G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Coarse grained multicomputers</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Other</subject><subject>Parallel algorithms</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeiNoEjdSZqmzZWMoZsw8EIF70Kajy3StSXpBv57s1XmpTfnA573HN4XoWsMDxgwm7zFwlKCy89bIHcAlNCUn6ARLguSsqLAp2h0RM7RRQhfAIDjNkKTuZfdOlFt3XrXrJK2ibP0wSQrL11jdLLZ1r1T7abb9saHS3RmZR3M1W8fo4_np_fZIl2-zl9m02WqKIE-zbilVrO8qjIGFirKdZlboipjK0NpVWpKLDdaK15aCZxTmkmmMk4YrUxuszG6H-6uZS067zbSf4tWOrGYLoVrvJMieuA8J2yHI50PtPJtCN7YowSD2GckDhmJfQACiDhkJHjU3Qy6TgYla-tlo1z4E-cYSIHzyD0OnImWd854EZQzjTLaeaN6oVv3z6cfyLJ7PQ</recordid><startdate>20030906</startdate><enddate>20030906</enddate><creator>Gebremedhin, Assefaw Hadish</creator><creator>Lassous, Isabelle Guérin</creator><creator>Gustedt, Jens</creator><creator>Telle, Jan Arne</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9558-5536</orcidid><orcidid>https://orcid.org/0000-0003-0779-1944</orcidid></search><sort><creationdate>20030906</creationdate><title>Graph coloring on coarse grained multicomputers</title><author>Gebremedhin, Assefaw Hadish ; Lassous, Isabelle Guérin ; Gustedt, Jens ; Telle, Jan Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-39f4fd65bb360f0b49d85f2cbefbe44b8d42f9eddc98fa099443a6c39264be5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Coarse grained multicomputers</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Other</topic><topic>Parallel algorithms</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebremedhin, Assefaw Hadish</creatorcontrib><creatorcontrib>Lassous, Isabelle Guérin</creatorcontrib><creatorcontrib>Gustedt, Jens</creatorcontrib><creatorcontrib>Telle, Jan Arne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebremedhin, Assefaw Hadish</au><au>Lassous, Isabelle Guérin</au><au>Gustedt, Jens</au><au>Telle, Jan Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph coloring on coarse grained multicomputers</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2003-09-06</date><risdate>2003</risdate><volume>131</volume><issue>1</issue><spage>179</spage><epage>198</epage><pages>179-198</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed algorithms require a parallel time of O(| G|/ p) and a total work and overall communication cost of O(| G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0166-218X(02)00424-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9558-5536</orcidid><orcidid>https://orcid.org/0000-0003-0779-1944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2003-09, Vol.131 (1), p.179-198
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_inria_00099526v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Coarse grained multicomputers
Combinatorics
Combinatorics. Ordered structures
Computer Science
Computer science
control theory
systems
Exact sciences and technology
Graph algorithms
Graph coloring
Graph theory
Mathematics
Other
Parallel algorithms
Sciences and techniques of general use
Theoretical computing
title Graph coloring on coarse grained multicomputers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20coloring%20on%20coarse%20grained%20multicomputers&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Gebremedhin,%20Assefaw%20Hadish&rft.date=2003-09-06&rft.volume=131&rft.issue=1&rft.spage=179&rft.epage=198&rft.pages=179-198&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/S0166-218X(02)00424-9&rft_dat=%3Chal_cross%3Eoai_HAL_inria_00099526v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X02004249&rfr_iscdi=true