Graph coloring on coarse grained multicomputers
We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph G with at most Δ+1 colors where Δ is the maximum degree in G. This algorithm is given in two variants: randomized and deterministic. We show that on a p-processor CGM model the proposed alg...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2003-09, Vol.131 (1), p.179-198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an efficient and scalable coarse grained multicomputer (CGM) coloring algorithm that colors a graph
G with at most
Δ+1 colors where
Δ is the maximum degree in
G. This algorithm is given in two variants:
randomized and
deterministic. We show that on a
p-processor CGM model the proposed algorithms require a parallel time of O(|
G|/
p) and a total work and overall communication cost of O(|
G|). These bounds correspond to the average case for the randomized version and to the worst case for the deterministic variant. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/S0166-218X(02)00424-9 |