Optical detection of ammonia inside a stack: Comparison of different techniques

[Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2020-07, Vol.159, p.107746, Article 107746
Hauptverfasser: D’Amato, F., Viciani, S., Montori, A., Lapini, A., Fraboulet, I., Poulleau, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107746
container_title Measurement : journal of the International Measurement Confederation
container_volume 159
creator D’Amato, F.
Viciani, S.
Montori, A.
Lapini, A.
Fraboulet, I.
Poulleau, J.
description [Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C. The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.
doi_str_mv 10.1016/j.measurement.2020.107746
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ineris_03318320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120302840</els_id><sourcerecordid>2440492327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOD_-h4ivduZrSevbKOqEwV4UfAtZestS16Ym3cD_3pSK-OjThcvvnHvuQeiGkjklVN438xZMPARooRvmjLBxr5SQJ2hGc8UzQdn7KZoRJnnGmKDn6CLGhhAieSFnaLPpB2fNHlcwgB2c77CvsWlb3zmDXRddBdjgOBj78YBL3_YmuDhRlatrCOkuTtJd5z4PEK_QWW32Ea5_5iV6e3p8LVfZevP8Ui7XmRVcDZkw2wXUUFhB8mJLVc4E49tCgFEFpUSmBV3kPJc1WCEUq6QxlueVgpwLYji_RHeT787sdR9ca8KX9sbp1XKtXQcppCac05wzcqQJv53wPvgx5qAbfwhdSqiZEEQUjDOVqGKibPAxBqh_nSnRY9260X_q1mPdeqo7actJC-nro4Ogo3XQWahcSMXqyrt_uHwDOnONyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492327</pqid></control><display><type>article</type><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><source>Elsevier ScienceDirect Journals</source><creator>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</creator><creatorcontrib>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</creatorcontrib><description>[Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C. The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107746</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Ammonia ; Analyzers ; Biomass ; Biomass burning ; Calibration issues ; Carbon dioxide ; Carbon dioxide concentration ; Chemical composition ; Emissions control ; Environmental Sciences ; Exhaust gases ; Gas flow ; Industrial plant emissions ; Multipass cell ; Optical detection techniques ; Optical measurement ; Optical properties ; Pollutants ; Pollution monitoring ; Soot ; Stack measurements</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107746, Article 107746</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</citedby><cites>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.107746$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-03318320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Amato, F.</creatorcontrib><creatorcontrib>Viciani, S.</creatorcontrib><creatorcontrib>Montori, A.</creatorcontrib><creatorcontrib>Lapini, A.</creatorcontrib><creatorcontrib>Fraboulet, I.</creatorcontrib><creatorcontrib>Poulleau, J.</creatorcontrib><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><title>Measurement : journal of the International Measurement Confederation</title><description>[Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C. The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</description><subject>Ammonia</subject><subject>Analyzers</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Calibration issues</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chemical composition</subject><subject>Emissions control</subject><subject>Environmental Sciences</subject><subject>Exhaust gases</subject><subject>Gas flow</subject><subject>Industrial plant emissions</subject><subject>Multipass cell</subject><subject>Optical detection techniques</subject><subject>Optical measurement</subject><subject>Optical properties</subject><subject>Pollutants</subject><subject>Pollution monitoring</subject><subject>Soot</subject><subject>Stack measurements</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkN1LwzAUxYMoOD_-h4ivduZrSevbKOqEwV4UfAtZestS16Ym3cD_3pSK-OjThcvvnHvuQeiGkjklVN438xZMPARooRvmjLBxr5SQJ2hGc8UzQdn7KZoRJnnGmKDn6CLGhhAieSFnaLPpB2fNHlcwgB2c77CvsWlb3zmDXRddBdjgOBj78YBL3_YmuDhRlatrCOkuTtJd5z4PEK_QWW32Ea5_5iV6e3p8LVfZevP8Ui7XmRVcDZkw2wXUUFhB8mJLVc4E49tCgFEFpUSmBV3kPJc1WCEUq6QxlueVgpwLYji_RHeT787sdR9ca8KX9sbp1XKtXQcppCac05wzcqQJv53wPvgx5qAbfwhdSqiZEEQUjDOVqGKibPAxBqh_nSnRY9260X_q1mPdeqo7actJC-nro4Ogo3XQWahcSMXqyrt_uHwDOnONyg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>D’Amato, F.</creator><creator>Viciani, S.</creator><creator>Montori, A.</creator><creator>Lapini, A.</creator><creator>Fraboulet, I.</creator><creator>Poulleau, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20200715</creationdate><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><author>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Analyzers</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Calibration issues</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chemical composition</topic><topic>Emissions control</topic><topic>Environmental Sciences</topic><topic>Exhaust gases</topic><topic>Gas flow</topic><topic>Industrial plant emissions</topic><topic>Multipass cell</topic><topic>Optical detection techniques</topic><topic>Optical measurement</topic><topic>Optical properties</topic><topic>Pollutants</topic><topic>Pollution monitoring</topic><topic>Soot</topic><topic>Stack measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amato, F.</creatorcontrib><creatorcontrib>Viciani, S.</creatorcontrib><creatorcontrib>Montori, A.</creatorcontrib><creatorcontrib>Lapini, A.</creatorcontrib><creatorcontrib>Fraboulet, I.</creatorcontrib><creatorcontrib>Poulleau, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amato, F.</au><au>Viciani, S.</au><au>Montori, A.</au><au>Lapini, A.</au><au>Fraboulet, I.</au><au>Poulleau, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical detection of ammonia inside a stack: Comparison of different techniques</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>159</volume><spage>107746</spage><pages>107746-</pages><artnum>107746</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>[Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C. The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107746</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107746, Article 107746
issn 0263-2241
1873-412X
language eng
recordid cdi_hal_primary_oai_HAL_ineris_03318320v1
source Elsevier ScienceDirect Journals
subjects Ammonia
Analyzers
Biomass
Biomass burning
Calibration issues
Carbon dioxide
Carbon dioxide concentration
Chemical composition
Emissions control
Environmental Sciences
Exhaust gases
Gas flow
Industrial plant emissions
Multipass cell
Optical detection techniques
Optical measurement
Optical properties
Pollutants
Pollution monitoring
Soot
Stack measurements
title Optical detection of ammonia inside a stack: Comparison of different techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20detection%20of%20ammonia%20inside%20a%20stack:%20Comparison%20of%20different%20techniques&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=D%E2%80%99Amato,%20F.&rft.date=2020-07-15&rft.volume=159&rft.spage=107746&rft.pages=107746-&rft.artnum=107746&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107746&rft_dat=%3Cproquest_hal_p%3E2440492327%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492327&rft_id=info:pmid/&rft_els_id=S0263224120302840&rfr_iscdi=true