Optical detection of ammonia inside a stack: Comparison of different techniques
[Display omitted] •Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compa...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2020-07, Vol.159, p.107746, Article 107746 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107746 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 159 |
creator | D’Amato, F. Viciani, S. Montori, A. Lapini, A. Fraboulet, I. Poulleau, J. |
description | [Display omitted]
•Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C.
The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot. |
doi_str_mv | 10.1016/j.measurement.2020.107746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ineris_03318320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224120302840</els_id><sourcerecordid>2440492327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMoOD_-h4ivduZrSevbKOqEwV4UfAtZestS16Ym3cD_3pSK-OjThcvvnHvuQeiGkjklVN438xZMPARooRvmjLBxr5SQJ2hGc8UzQdn7KZoRJnnGmKDn6CLGhhAieSFnaLPpB2fNHlcwgB2c77CvsWlb3zmDXRddBdjgOBj78YBL3_YmuDhRlatrCOkuTtJd5z4PEK_QWW32Ea5_5iV6e3p8LVfZevP8Ui7XmRVcDZkw2wXUUFhB8mJLVc4E49tCgFEFpUSmBV3kPJc1WCEUq6QxlueVgpwLYji_RHeT787sdR9ca8KX9sbp1XKtXQcppCac05wzcqQJv53wPvgx5qAbfwhdSqiZEEQUjDOVqGKibPAxBqh_nSnRY9260X_q1mPdeqo7actJC-nro4Ogo3XQWahcSMXqyrt_uHwDOnONyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440492327</pqid></control><display><type>article</type><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><source>Elsevier ScienceDirect Journals</source><creator>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</creator><creatorcontrib>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</creatorcontrib><description>[Display omitted]
•Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C.
The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2020.107746</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Ammonia ; Analyzers ; Biomass ; Biomass burning ; Calibration issues ; Carbon dioxide ; Carbon dioxide concentration ; Chemical composition ; Emissions control ; Environmental Sciences ; Exhaust gases ; Gas flow ; Industrial plant emissions ; Multipass cell ; Optical detection techniques ; Optical measurement ; Optical properties ; Pollutants ; Pollution monitoring ; Soot ; Stack measurements</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107746, Article 107746</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</citedby><cites>FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2020.107746$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-03318320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Amato, F.</creatorcontrib><creatorcontrib>Viciani, S.</creatorcontrib><creatorcontrib>Montori, A.</creatorcontrib><creatorcontrib>Lapini, A.</creatorcontrib><creatorcontrib>Fraboulet, I.</creatorcontrib><creatorcontrib>Poulleau, J.</creatorcontrib><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><title>Measurement : journal of the International Measurement Confederation</title><description>[Display omitted]
•Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C.
The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</description><subject>Ammonia</subject><subject>Analyzers</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Calibration issues</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chemical composition</subject><subject>Emissions control</subject><subject>Environmental Sciences</subject><subject>Exhaust gases</subject><subject>Gas flow</subject><subject>Industrial plant emissions</subject><subject>Multipass cell</subject><subject>Optical detection techniques</subject><subject>Optical measurement</subject><subject>Optical properties</subject><subject>Pollutants</subject><subject>Pollution monitoring</subject><subject>Soot</subject><subject>Stack measurements</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkN1LwzAUxYMoOD_-h4ivduZrSevbKOqEwV4UfAtZestS16Ym3cD_3pSK-OjThcvvnHvuQeiGkjklVN438xZMPARooRvmjLBxr5SQJ2hGc8UzQdn7KZoRJnnGmKDn6CLGhhAieSFnaLPpB2fNHlcwgB2c77CvsWlb3zmDXRddBdjgOBj78YBL3_YmuDhRlatrCOkuTtJd5z4PEK_QWW32Ea5_5iV6e3p8LVfZevP8Ui7XmRVcDZkw2wXUUFhB8mJLVc4E49tCgFEFpUSmBV3kPJc1WCEUq6QxlueVgpwLYji_RHeT787sdR9ca8KX9sbp1XKtXQcppCac05wzcqQJv53wPvgx5qAbfwhdSqiZEEQUjDOVqGKibPAxBqh_nSnRY9260X_q1mPdeqo7actJC-nro4Ogo3XQWahcSMXqyrt_uHwDOnONyg</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>D’Amato, F.</creator><creator>Viciani, S.</creator><creator>Montori, A.</creator><creator>Lapini, A.</creator><creator>Fraboulet, I.</creator><creator>Poulleau, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20200715</creationdate><title>Optical detection of ammonia inside a stack: Comparison of different techniques</title><author>D’Amato, F. ; Viciani, S. ; Montori, A. ; Lapini, A. ; Fraboulet, I. ; Poulleau, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-4ab5efe9c4089b1782423b94ea791106782158386fec4472d6aac38d7e8340a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia</topic><topic>Analyzers</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Calibration issues</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chemical composition</topic><topic>Emissions control</topic><topic>Environmental Sciences</topic><topic>Exhaust gases</topic><topic>Gas flow</topic><topic>Industrial plant emissions</topic><topic>Multipass cell</topic><topic>Optical detection techniques</topic><topic>Optical measurement</topic><topic>Optical properties</topic><topic>Pollutants</topic><topic>Pollution monitoring</topic><topic>Soot</topic><topic>Stack measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amato, F.</creatorcontrib><creatorcontrib>Viciani, S.</creatorcontrib><creatorcontrib>Montori, A.</creatorcontrib><creatorcontrib>Lapini, A.</creatorcontrib><creatorcontrib>Fraboulet, I.</creatorcontrib><creatorcontrib>Poulleau, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amato, F.</au><au>Viciani, S.</au><au>Montori, A.</au><au>Lapini, A.</au><au>Fraboulet, I.</au><au>Poulleau, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical detection of ammonia inside a stack: Comparison of different techniques</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>159</volume><spage>107746</spage><pages>107746-</pages><artnum>107746</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>[Display omitted]
•Ammonia was measured as a target gas in an artificial stack.•Optical detection techniques exhibit different resilience to absorption lineshapes.•Target gas absorption widths are sensitive to the concentrations of water and CO2.•Direct absorption and derivative detection were compared with respect to calibration.•An optical multipass cell was used, completely inside an artificial stack at 140 °C.
The quantitative detection of pollutants in industrial emissions, in particular the emissions of biomass burners, requires different types of analyzers. Optical devices are usually sensitive to the transparency and dirtiness of the exhaust gases, so optical measurements are normally carried out by extracting the samples from the stacks. This paper has a twofold aim. First, we will prove that the molecular composition of the exhaust mixture (in particular the concentration of water and carbon dioxide) can deeply affect the outcome of optical analyzers, depending on the adopted detection technique. This is a critical issue, in particular with a view to the necessity of providing suitable reference methods for monitoring biomass burners emissions. Second, we will show how it is possible to measure inside an artificial stack by using an optical multipass cell located across the gas flow, even at 140 °C, or in presence of soot.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2020.107746</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2020-07, Vol.159, p.107746, Article 107746 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_ineris_03318320v1 |
source | Elsevier ScienceDirect Journals |
subjects | Ammonia Analyzers Biomass Biomass burning Calibration issues Carbon dioxide Carbon dioxide concentration Chemical composition Emissions control Environmental Sciences Exhaust gases Gas flow Industrial plant emissions Multipass cell Optical detection techniques Optical measurement Optical properties Pollutants Pollution monitoring Soot Stack measurements |
title | Optical detection of ammonia inside a stack: Comparison of different techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20detection%20of%20ammonia%20inside%20a%20stack:%20Comparison%20of%20different%20techniques&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=D%E2%80%99Amato,%20F.&rft.date=2020-07-15&rft.volume=159&rft.spage=107746&rft.pages=107746-&rft.artnum=107746&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2020.107746&rft_dat=%3Cproquest_hal_p%3E2440492327%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440492327&rft_id=info:pmid/&rft_els_id=S0263224120302840&rfr_iscdi=true |