Oestrogen-induced androgen insufficiency results in a reduction of proliferation and differentiation of spermatogonia in the zebrafish testis

Androgens can induce complete spermatogenesis in immature or prepubertal teleost fish. However, many aspects of the role of androgens in adult teleost spermatogenesis have remained elusive. Since oestrogens inhibit androgen synthesis, we used an oestrogen-induced androgen depletion model to identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2009-08, Vol.202 (2), p.287-297
Hauptverfasser: de Waal, Paul P, Leal, Marcelo C, García-López, Ángel, Liarte, Sergio, de Jonge, Hugo, Hinfray, Nathalie, Brion, François, Schulz, Rüdiger W, Bogerd, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Androgens can induce complete spermatogenesis in immature or prepubertal teleost fish. However, many aspects of the role of androgens in adult teleost spermatogenesis have remained elusive. Since oestrogens inhibit androgen synthesis, we used an oestrogen-induced androgen depletion model to identify androgen-dependent stages during adult zebrafish spermatogenesis. Exposure to 10 nM 17β-oestradiol (E2) in vivo at least halved the mass of differentiating germ cells (from type B spermatogonia to spermatids), while type A spermatogonia accumulated. Studies on the cellular dynamics revealed that a reduction of spermatogonial proliferation together with an inhibition of their differentiation to type B spermatogonia were the basis for the oestrogen-mediated disturbance of spermatogenesis. The capacity of the zebrafish testis to produce 11-ketotestosterone as well as the expression of steroidogenesis-related genes was markedly decreased after in vivo oestrogen exposure. Moreover, the androgen-release response to recombinant zebrafish Lh was lost after oestrogen exposure. We conclude that oestrogen exposure caused a state of androgen insufficiency in adult male zebrafish. Since the downregulation of the steroidogenic system as well as the disturbance of spermatogenesis in testicular explants exposed to E2 ex vivo was much less severe than after in vivo exposure, the main inhibitory effect appears to be exerted via feedback inhibition of gonadotropin release. This experimental set-up helped to identify spermatogonial proliferation and their differentiation as androgen targets in adult zebrafish spermatogenesis.
ISSN:0022-0795
1479-6805
DOI:10.1677/JOE-09-0050