Management of Post-mining Large-scale Ground Failures: Blast Swarms Field Experiment for Calibration of Permanent Microseismic Early-warning Systems
In France, decades of coal and iron-ore mining have left extensive underground cavities beneath or in the vicinity of urban areas. This poses an environmental challenge for society. To ensure post-mining risk management and public safety, wherever remediation is not possible, numerous real-time micr...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2010-02, Vol.167 (1-2), p.43-62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In France, decades of coal and iron-ore mining have left extensive underground cavities beneath or in the vicinity of urban areas. This poses an environmental challenge for society. To ensure post-mining risk management and public safety, wherever remediation is not possible, numerous real-time microseismic monitoring systems are being installed. The objective is to detect remote rock mass fracturing processes, precursory events and acceleration phases for appropriate and timely action. Although no consistent collapse has occurred in any of the monitored areas yet, single 3-D probes record many microseismic events of very low amplitude which create difficulties in the quantitative data analysis. The development of specific quantitative processing has therefore become a major issue in our research work. For that purpose, a field experiment was carried out on six of the instrumented sites. It consisted of sequences of small blasts in mine pillars which were accurately controlled in terms of the location, orientation and energy of the explosive source. The data analysis was used to calibrate parameters (velocity model, 3-D sensor orientation, etc.) for reliable 3-D localization and to develop an empirical law to estimate the source energy from the sensor energy. This work now enables us to analyze real microseismic events with a considerably better level of accuracy and to obtain enough information and confidence to discuss these data in terms of site stability. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-009-0005-4 |