Structural stability of Nd2Zr2O7 pyrochlore ion-irradiated in a broad energy range
The phase transformations induced by electronic excitation (Se) and ballistic processes (Sn) in Nd2Zr2O7 pyrochlores irradiated with heavy ions in three domains of energy (∼1GeV, ∼100MeV and a few MeV) were investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. I...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2013-10, Vol.61 (17), p.6492-6505 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase transformations induced by electronic excitation (Se) and ballistic processes (Sn) in Nd2Zr2O7 pyrochlores irradiated with heavy ions in three domains of energy (∼1GeV, ∼100MeV and a few MeV) were investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. In the Se regime at high energy, results show that: (i) ion tracks are formed above a Se threshold of 12.5keVnm−1; (ii) both pyrochlore→anion-deficient fluorite phase transition and amorphization occur; (iii) total amorphization is always observed at the highest fluences; (iv) the internal structure (amount of amorphous phase vs. its anion-deficient fluorite counterpart) and the diameter of tracks depend on many parameters such as Se, the deposited energy density and the recrystallization rate. For irradiations performed with low-energy ions in the Sn regime, only the anion-deficient fluorite phase is formed up to a dose of 40dpa. Thus Nd2Zr2O7 exhibits an unusual behaviour since this compound is amorphizable by Se and non-amorphizable by Sn. Annealing of totally amorphized Nd2Zr2O7 samples reveals strong differences in the recovery processes with other pyrochlore materials that are related to their different chemical compositions. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2013.07.027 |