Effects of the temperature dependence of the in-medium nucleon mass on core-collapse supernovae
Aims. A complete description of the core collapse supernova mechanism requires an appropriate treatment of both the hydrodynamics and the microphysics. We study the influence of a nuclear physics input, namely the temperature dependence of the nucleon effective mass in nuclei induced by the in-mediu...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2012-05, Vol.541, p.A30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims. A complete description of the core collapse supernova mechanism requires an appropriate treatment of both the hydrodynamics and the microphysics. We study the influence of a nuclear physics input, namely the temperature dependence of the nucleon effective mass in nuclei induced by the in-medium effects, in the core collapse of a massive star. Methods. We present here the first implementation of this nuclear input in a hydrodynamical one-dimensional simulation. The simulations are performed with a spherically symmetric Newtonian model, with neutrino transport treated in the multi-group flux-limited diffusion approximation. Results. The inclusion of the temperature dependence of the in-medium nucleon mass has an impact on the equation of state of the system and reduces the deleptonisation during the collapse. This results in a non-negligible effect on the shock wave energetics. The shock wave is formed more outwards, and in the first few milliseconds after bounce the shock front has propagated further out. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/201118187 |