Micro- and macro-structure of implantation-induced disorder in Ge
The structure of ion implantation-induced damage in Ge substrates has been investigated with a combination of ion- and photon-based techniques including Rutherford backscattering spectrometry (RBS), perturbed angular correlation (PAC) and extended X-ray absorption fine structure (EXAFS) spectroscopy...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2000, Vol.161, p.1033-1037 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure of ion implantation-induced damage in Ge substrates has been investigated with a combination of ion- and photon-based techniques including Rutherford backscattering spectrometry (RBS), perturbed angular correlation (PAC) and extended X-ray absorption fine structure (EXAFS) spectroscopy. For MeV Ge ion implantation at −196°C, the dose dependence of the decrease in local atomic order, determined from EXAFS and PAC, was compared to the number of displaced atoms determined from RBS measurements. An EXAFS determined damage fraction was shown to be a better estimate of amorphous fraction than the number of displaced atoms. PAC was used to elucidate the evolution of defective configurations, and was compared to the RBS and EXAFS results. A fit to the Overlap model with the overlap of two ion cascades for complete amorphization best described the experimental results. |
---|---|
ISSN: | 0168-583X 1872-9584 1872-9584 0168-583X |
DOI: | 10.1016/S0168-583X(99)00887-3 |