L1 Properties of the Nadaraya Quantile Estimator
Let X be a real random variable having f as density function. Let F be its cumulative distribution function and Q its quantile function. For h > 0, let F h and Q h denote respectively the Nadaraya kernel estimator of F and Q . In the first part of this paper the almost sure convergence of the con...
Gespeichert in:
Veröffentlicht in: | Sankhya A 2022-08, Vol.84 (2), p.867-884 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a real random variable having
f
as density function. Let
F
be its cumulative distribution function and
Q
its quantile function. For
h
> 0, let
F
h
and
Q
h
denote respectively the Nadaraya kernel estimator of
F
and
Q
. In the first part of this paper the almost sure convergence of the conventional
L
1
distance between
Q
h
and
Q
is established. In the second part, the
L
1
right inversion
distance is introduced. The representation of this
L
1
right inversion distance in terms of
F
h
and
F
is given. This representation allows us to suggest ways to choose a
global
bandwidth for the estimator
Q
h
. |
---|---|
ISSN: | 0976-836X 0972-7671 0976-8378 0976-836X |
DOI: | 10.1007/s13171-020-00225-0 |