Detection and Asynchronous Flow Prediction in a MOOC

Flow is a human psychological state positively correlated to self-efficacy, motivation, engagement, and academic achievement. In a MOOC, flow detection and prediction would potentially allow for learners’ content personalization, fostering engagement and increasing already-low completion rates. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-05, Vol.5 (5), p.599, Article 599
Hauptverfasser: Ramírez Luelmo, Sergio Iván, El Mawas, Nour, Bachelet, Rémi, Heutte, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow is a human psychological state positively correlated to self-efficacy, motivation, engagement, and academic achievement. In a MOOC, flow detection and prediction would potentially allow for learners’ content personalization, fostering engagement and increasing already-low completion rates. In this study, we propose a Machine Learning flow-predicting model by pairing the results of the EduFlow-2 and Flow-Q measure instruments issued to participants of a MOOC ( n  = 1589, 2-year data collection). The resulting flow-predicting-model detects flow in an automatic, asynchronous fashion by applying only the EduFlow-2 measurement instrument. Our model proposal predicts flow presence with greater precision than it detects flow absence.
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-024-02838-w