Health Care and Economic Growth
In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the...
Gespeichert in:
Veröffentlicht in: | Annales d'économie et de statistique 2004 (75/76), p.257-272 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 75/76 |
container_start_page | 257 |
container_title | Annales d'économie et de statistique |
container_volume | |
creator | Gourdel, Pascal Hoang-Ngoc, Liem Le Van, Cuong Mazamba, Tédie |
description | In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986]. |
doi_str_mv | 10.2307/20079103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_00119022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20079103</jstor_id><sourcerecordid>20079103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</originalsourceid><addsrcrecordid>eNp10E9LAzEQBfAgCq5V8Bu4F8GDqzOTTdIcS6mtUPCi4C1kswm7ZdstSVH89ras_y6eBobfe4fH2CXCHXFQ9wSgNAI_YhmRokKWWh2zDJTURTnWr6fsLKUVgOSlwIxdLbztdk0-tdHndlPnM9dv-nXr8nns33fNOTsJtkv-4uuO2MvD7Hm6KJZP88fpZFk44qgLLqtAQlTSQ411LYV1tRJeVb5CL4XSY_QcA4YSwCMRr3SFVlCQDrnSgo_Y7dDb2M5sY7u28cP0tjWLydLsf6lJBgBRA9Eb7vnNwF3sU4o-_GQQzGEH873Dnl4PdGuTs12IduPa9Oul0JrkH7dKuz7-3_cJDt1kSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Health Care and Economic Growth</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</creator><creatorcontrib>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</creatorcontrib><description>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</description><identifier>ISSN: 0769-489X</identifier><identifier>EISSN: 2272-6497</identifier><identifier>DOI: 10.2307/20079103</identifier><language>eng</language><publisher>Paris: ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</publisher><subject>Applications ; Applied sciences ; Consumption ; Economic growth models ; Economic growth rate ; Economics and Finance ; Euler equations ; Exact sciences and technology ; Health care economics ; Health expenditures ; Human capital ; Humanities and Social Sciences ; Insurance, economics, finance ; Mathematics ; Medical sciences ; Operational research and scientific management ; Operational research. Management science ; Optimization and Control ; Optimization. Search problems ; Politiques Publiques / Public Policies ; Probability and statistics ; Probability theory and stochastic processes ; Production functions ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics ; Uniqueness ; Utility functions</subject><ispartof>Annales d'économie et de statistique, 2004 (75/76), p.257-272</ispartof><rights>Copyright 2004 INSEE</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</citedby><orcidid>0000-0002-2710-522X ; 0000-0002-6057-903X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20079103$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20079103$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,799,828,881,4010,4036,4037,23909,23910,25118,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16599263$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://shs.hal.science/halshs-00119022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gourdel, Pascal</creatorcontrib><creatorcontrib>Hoang-Ngoc, Liem</creatorcontrib><creatorcontrib>Le Van, Cuong</creatorcontrib><creatorcontrib>Mazamba, Tédie</creatorcontrib><title>Health Care and Economic Growth</title><title>Annales d'économie et de statistique</title><description>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</description><subject>Applications</subject><subject>Applied sciences</subject><subject>Consumption</subject><subject>Economic growth models</subject><subject>Economic growth rate</subject><subject>Economics and Finance</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Health care economics</subject><subject>Health expenditures</subject><subject>Human capital</subject><subject>Humanities and Social Sciences</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization and Control</subject><subject>Optimization. Search problems</subject><subject>Politiques Publiques / Public Policies</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Production functions</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><subject>Uniqueness</subject><subject>Utility functions</subject><issn>0769-489X</issn><issn>2272-6497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10E9LAzEQBfAgCq5V8Bu4F8GDqzOTTdIcS6mtUPCi4C1kswm7ZdstSVH89ras_y6eBobfe4fH2CXCHXFQ9wSgNAI_YhmRokKWWh2zDJTURTnWr6fsLKUVgOSlwIxdLbztdk0-tdHndlPnM9dv-nXr8nns33fNOTsJtkv-4uuO2MvD7Hm6KJZP88fpZFk44qgLLqtAQlTSQ411LYV1tRJeVb5CL4XSY_QcA4YSwCMRr3SFVlCQDrnSgo_Y7dDb2M5sY7u28cP0tjWLydLsf6lJBgBRA9Eb7vnNwF3sU4o-_GQQzGEH873Dnl4PdGuTs12IduPa9Oul0JrkH7dKuz7-3_cJDt1kSw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Gourdel, Pascal</creator><creator>Hoang-Ngoc, Liem</creator><creator>Le Van, Cuong</creator><creator>Mazamba, Tédie</creator><general>ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</general><general>Institut national de la statistique et des études économiques</general><general>INSEE-GENES</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-2710-522X</orcidid><orcidid>https://orcid.org/0000-0002-6057-903X</orcidid></search><sort><creationdate>2004</creationdate><title>Health Care and Economic Growth</title><author>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Applied sciences</topic><topic>Consumption</topic><topic>Economic growth models</topic><topic>Economic growth rate</topic><topic>Economics and Finance</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Health care economics</topic><topic>Health expenditures</topic><topic>Human capital</topic><topic>Humanities and Social Sciences</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization and Control</topic><topic>Optimization. Search problems</topic><topic>Politiques Publiques / Public Policies</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Production functions</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><topic>Uniqueness</topic><topic>Utility functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gourdel, Pascal</creatorcontrib><creatorcontrib>Hoang-Ngoc, Liem</creatorcontrib><creatorcontrib>Le Van, Cuong</creatorcontrib><creatorcontrib>Mazamba, Tédie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Annales d'économie et de statistique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourdel, Pascal</au><au>Hoang-Ngoc, Liem</au><au>Le Van, Cuong</au><au>Mazamba, Tédie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health Care and Economic Growth</atitle><jtitle>Annales d'économie et de statistique</jtitle><date>2004</date><risdate>2004</risdate><issue>75/76</issue><spage>257</spage><epage>272</epage><pages>257-272</pages><issn>0769-489X</issn><eissn>2272-6497</eissn><abstract>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</abstract><cop>Paris</cop><pub>ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</pub><doi>10.2307/20079103</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2710-522X</orcidid><orcidid>https://orcid.org/0000-0002-6057-903X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0769-489X |
ispartof | Annales d'économie et de statistique, 2004 (75/76), p.257-272 |
issn | 0769-489X 2272-6497 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_halshs_00119022v1 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Free E- Journals; JSTOR Mathematics & Statistics |
subjects | Applications Applied sciences Consumption Economic growth models Economic growth rate Economics and Finance Euler equations Exact sciences and technology Health care economics Health expenditures Human capital Humanities and Social Sciences Insurance, economics, finance Mathematics Medical sciences Operational research and scientific management Operational research. Management science Optimization and Control Optimization. Search problems Politiques Publiques / Public Policies Probability and statistics Probability theory and stochastic processes Production functions Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistics Uniqueness Utility functions |
title | Health Care and Economic Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20Care%20and%20Economic%20Growth&rft.jtitle=Annales%20d'%C3%A9conomie%20et%20de%20statistique&rft.au=Gourdel,%20Pascal&rft.date=2004&rft.issue=75/76&rft.spage=257&rft.epage=272&rft.pages=257-272&rft.issn=0769-489X&rft.eissn=2272-6497&rft_id=info:doi/10.2307/20079103&rft_dat=%3Cjstor_hal_p%3E20079103%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20079103&rfr_iscdi=true |