Health Care and Economic Growth

In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales d'économie et de statistique 2004 (75/76), p.257-272
Hauptverfasser: Gourdel, Pascal, Hoang-Ngoc, Liem, Le Van, Cuong, Mazamba, Tédie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue 75/76
container_start_page 257
container_title Annales d'économie et de statistique
container_volume
creator Gourdel, Pascal
Hoang-Ngoc, Liem
Le Van, Cuong
Mazamba, Tédie
description In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].
doi_str_mv 10.2307/20079103
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_00119022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20079103</jstor_id><sourcerecordid>20079103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</originalsourceid><addsrcrecordid>eNp10E9LAzEQBfAgCq5V8Bu4F8GDqzOTTdIcS6mtUPCi4C1kswm7ZdstSVH89ras_y6eBobfe4fH2CXCHXFQ9wSgNAI_YhmRokKWWh2zDJTURTnWr6fsLKUVgOSlwIxdLbztdk0-tdHndlPnM9dv-nXr8nns33fNOTsJtkv-4uuO2MvD7Hm6KJZP88fpZFk44qgLLqtAQlTSQ411LYV1tRJeVb5CL4XSY_QcA4YSwCMRr3SFVlCQDrnSgo_Y7dDb2M5sY7u28cP0tjWLydLsf6lJBgBRA9Eb7vnNwF3sU4o-_GQQzGEH873Dnl4PdGuTs12IduPa9Oul0JrkH7dKuz7-3_cJDt1kSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Health Care and Economic Growth</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</creator><creatorcontrib>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</creatorcontrib><description>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</description><identifier>ISSN: 0769-489X</identifier><identifier>EISSN: 2272-6497</identifier><identifier>DOI: 10.2307/20079103</identifier><language>eng</language><publisher>Paris: ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</publisher><subject>Applications ; Applied sciences ; Consumption ; Economic growth models ; Economic growth rate ; Economics and Finance ; Euler equations ; Exact sciences and technology ; Health care economics ; Health expenditures ; Human capital ; Humanities and Social Sciences ; Insurance, economics, finance ; Mathematics ; Medical sciences ; Operational research and scientific management ; Operational research. Management science ; Optimization and Control ; Optimization. Search problems ; Politiques Publiques / Public Policies ; Probability and statistics ; Probability theory and stochastic processes ; Production functions ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistics ; Uniqueness ; Utility functions</subject><ispartof>Annales d'économie et de statistique, 2004 (75/76), p.257-272</ispartof><rights>Copyright 2004 INSEE</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</citedby><orcidid>0000-0002-2710-522X ; 0000-0002-6057-903X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20079103$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20079103$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,799,828,881,4010,4036,4037,23909,23910,25118,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16599263$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://shs.hal.science/halshs-00119022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gourdel, Pascal</creatorcontrib><creatorcontrib>Hoang-Ngoc, Liem</creatorcontrib><creatorcontrib>Le Van, Cuong</creatorcontrib><creatorcontrib>Mazamba, Tédie</creatorcontrib><title>Health Care and Economic Growth</title><title>Annales d'économie et de statistique</title><description>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</description><subject>Applications</subject><subject>Applied sciences</subject><subject>Consumption</subject><subject>Economic growth models</subject><subject>Economic growth rate</subject><subject>Economics and Finance</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Health care economics</subject><subject>Health expenditures</subject><subject>Human capital</subject><subject>Humanities and Social Sciences</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization and Control</subject><subject>Optimization. Search problems</subject><subject>Politiques Publiques / Public Policies</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Production functions</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistics</subject><subject>Uniqueness</subject><subject>Utility functions</subject><issn>0769-489X</issn><issn>2272-6497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10E9LAzEQBfAgCq5V8Bu4F8GDqzOTTdIcS6mtUPCi4C1kswm7ZdstSVH89ras_y6eBobfe4fH2CXCHXFQ9wSgNAI_YhmRokKWWh2zDJTURTnWr6fsLKUVgOSlwIxdLbztdk0-tdHndlPnM9dv-nXr8nns33fNOTsJtkv-4uuO2MvD7Hm6KJZP88fpZFk44qgLLqtAQlTSQ411LYV1tRJeVb5CL4XSY_QcA4YSwCMRr3SFVlCQDrnSgo_Y7dDb2M5sY7u28cP0tjWLydLsf6lJBgBRA9Eb7vnNwF3sU4o-_GQQzGEH873Dnl4PdGuTs12IduPa9Oul0JrkH7dKuz7-3_cJDt1kSw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Gourdel, Pascal</creator><creator>Hoang-Ngoc, Liem</creator><creator>Le Van, Cuong</creator><creator>Mazamba, Tédie</creator><general>ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</general><general>Institut national de la statistique et des études économiques</general><general>INSEE-GENES</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-2710-522X</orcidid><orcidid>https://orcid.org/0000-0002-6057-903X</orcidid></search><sort><creationdate>2004</creationdate><title>Health Care and Economic Growth</title><author>Gourdel, Pascal ; Hoang-Ngoc, Liem ; Le Van, Cuong ; Mazamba, Tédie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-36bf255b6e0d1dd65acd75e7beb1e657981e31f1f400e1223b9b1a52f6c137953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Applied sciences</topic><topic>Consumption</topic><topic>Economic growth models</topic><topic>Economic growth rate</topic><topic>Economics and Finance</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Health care economics</topic><topic>Health expenditures</topic><topic>Human capital</topic><topic>Humanities and Social Sciences</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization and Control</topic><topic>Optimization. Search problems</topic><topic>Politiques Publiques / Public Policies</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Production functions</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistics</topic><topic>Uniqueness</topic><topic>Utility functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gourdel, Pascal</creatorcontrib><creatorcontrib>Hoang-Ngoc, Liem</creatorcontrib><creatorcontrib>Le Van, Cuong</creatorcontrib><creatorcontrib>Mazamba, Tédie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Annales d'économie et de statistique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourdel, Pascal</au><au>Hoang-Ngoc, Liem</au><au>Le Van, Cuong</au><au>Mazamba, Tédie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health Care and Economic Growth</atitle><jtitle>Annales d'économie et de statistique</jtitle><date>2004</date><risdate>2004</risdate><issue>75/76</issue><spage>257</spage><epage>272</epage><pages>257-272</pages><issn>0769-489X</issn><eissn>2272-6497</eissn><abstract>In this paper we adapt a discrete time version of the Lucas model to a model with social protection where part of the total production is devoted to the health expenditures. The output is produced by labor and the technology exhibits externalities. The rate of growth of human capital depends on the ratio of health expenditures over GDP. We give conditions for which the optimal himan capital sequences are increasing. When the instantaneous utility function is isoelastic and the production function is Cobb-Douglas, we prove that the optimal himan capital sequences grow at constant rate. Moreover, we prove there exists a unique equilibrium in the sense of Lucas [1988] or Romer [1986]. /// Dans ce papier, nous adaptons une version en temps discret du modèle de Lucas de façon à prendre en compte la protection sociale, financée par une partie de la production. Le travail est le seul facateur de production et la technologie est caractérisée par des externalités. Le taux de croissance du capital humain dépend du ratio des dépenses publiques dans le PIB. Nous donnons les conditions sous lesquelles la trajectoire du capital humain est croissante. Quand la fonction d'utilité indirecte est isoélastique et la fonction de production est Cobb-Douglas, nous montrons que le capital humain croît à taux constant. De plus, nous montrons qu'il existe un solution unique au sens de Lucas [1988] et Romer [1986].</abstract><cop>Paris</cop><pub>ADRES (Association pour le Développement de la Recherche en Économie et en Statistique)</pub><doi>10.2307/20079103</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2710-522X</orcidid><orcidid>https://orcid.org/0000-0002-6057-903X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0769-489X
ispartof Annales d'économie et de statistique, 2004 (75/76), p.257-272
issn 0769-489X
2272-6497
language eng
recordid cdi_hal_primary_oai_HAL_halshs_00119022v1
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Free E- Journals; JSTOR Mathematics & Statistics
subjects Applications
Applied sciences
Consumption
Economic growth models
Economic growth rate
Economics and Finance
Euler equations
Exact sciences and technology
Health care economics
Health expenditures
Human capital
Humanities and Social Sciences
Insurance, economics, finance
Mathematics
Medical sciences
Operational research and scientific management
Operational research. Management science
Optimization and Control
Optimization. Search problems
Politiques Publiques / Public Policies
Probability and statistics
Probability theory and stochastic processes
Production functions
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistics
Uniqueness
Utility functions
title Health Care and Economic Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health%20Care%20and%20Economic%20Growth&rft.jtitle=Annales%20d'%C3%A9conomie%20et%20de%20statistique&rft.au=Gourdel,%20Pascal&rft.date=2004&rft.issue=75/76&rft.spage=257&rft.epage=272&rft.pages=257-272&rft.issn=0769-489X&rft.eissn=2272-6497&rft_id=info:doi/10.2307/20079103&rft_dat=%3Cjstor_hal_p%3E20079103%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20079103&rfr_iscdi=true