Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3
The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, 57Fe Mössbauer spectroscopy, 27Al NMR, EELS, HR-TEM, XRD, N 2 physisorption, and FTIR spectroscopy) were...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2003-01, Vol.213 (2), p.251-271 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, 57Fe Mössbauer spectroscopy, 27Al NMR, EELS, HR-TEM, XRD, N 2 physisorption, and FTIR spectroscopy) were applied in order to correlate the changes occurring in the local environment of the Fe atoms with migration and aggregation phenomena of iron at micro- and macroscopic scale. Mononuclear isolated Fe-species are formed upon FeCl3 sublimation, which are transformed into binuclear Fe-complexes during washing. During calcination, iron detached from the Brønsted sites migrates to the external surface of the zeolite, finally leading to significant agglomeration. Nevertheless, agglomeration of Fe can be strongly suppressed by adequately tuning the conditions of the calcination. |
---|---|
ISSN: | 0021-9517 1090-2694 |
DOI: | 10.1016/s0021-9517(02)00051-9 |