Muller’s ratchet in a near-critical regime: Tournament versus fitness proportional selection

Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2024-08, Vol.158, p.121-138
Hauptverfasser: Igelbrink, J.L., González Casanova, A., Smadi, C., Wakolbinger, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the “near-critical” regime that was in the focus of Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as N→∞). Using a Moran model, we investigate the“rule of thumb” given in Etheridge et al. (2009) for the click rate of the “classical ratchet” by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.
ISSN:0040-5809
1096-0325
1096-0325
DOI:10.1016/j.tpb.2024.06.001