k‐Nearest neighbors local linear regression for functional and missing data at random
We combine the k‐Nearest Neighbors (kNN) method to the local linear estimation (LLE) approach to construct a new estimator (LLE‐kNN) of the regression operator when the regressor is of functional type and the response variable is a scalar but observed with some missing at random (MAR) observations....
Gespeichert in:
Veröffentlicht in: | Statistica Neerlandica 2021-02, Vol.75 (1), p.42-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We combine the k‐Nearest Neighbors (kNN) method to the local linear estimation (LLE) approach to construct a new estimator (LLE‐kNN) of the regression operator when the regressor is of functional type and the response variable is a scalar but observed with some missing at random (MAR) observations. The resulting estimator inherits many of the advantages of both approaches (kNN and LLE methods). This is confirmed by the established asymptotic results, in terms of the pointwise and uniform almost complete consistencies, and the precise convergence rates. In addition, a numerical study (i) on simulated data, then (ii) on a real dataset concerning the sugar quality using fluorescence data, were conducted. This practical study clearly shows the feasibility and the superiority of the LLE‐kNN estimator compared to competitive estimators. |
---|---|
ISSN: | 0039-0402 1467-9574 |
DOI: | 10.1111/stan.12224 |