Global dynamics for the stochastic nonlinear beam equations on the four-dimensional torus

We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2024-11, p.1-39
Hauptverfasser: Chapouto, Andreia, Li, Guopeng, Liu, Ruoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all subcritical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I -method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2024.87