Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics

The polar decomposition X = W R, with X ∈ GL(n, R), W ∈ S+(n), and R ∈ O(n) , suggests a right action of the orthogonal group O(n) on the general linear group GL(n, R). Equipped with the Frobenius metric, the O(n)-principal bundle π : X ∈ GL(n, R) → X O(n) ∈ GL(n, R)/O(n) becomes a Riemannian submer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2024-11, Vol.362 (G12), p.1847-1856
Hauptverfasser: Bisson, Olivier, Pennec, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polar decomposition X = W R, with X ∈ GL(n, R), W ∈ S+(n), and R ∈ O(n) , suggests a right action of the orthogonal group O(n) on the general linear group GL(n, R). Equipped with the Frobenius metric, the O(n)-principal bundle π : X ∈ GL(n, R) → X O(n) ∈ GL(n, R)/O(n) becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section s • π in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space GL(n, R)/O(n).
ISSN:1778-3569
1631-073X
1778-3569
DOI:10.5802/crmath.692