Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation

The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-04, Vol.276 (16), p.12839-12848
Hauptverfasser: Bonnet, C, Boucher, D, Lazereg, S, Pedrotti, B, Islam, K, Denoulet, P, Larcher, J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12848
container_issue 16
container_start_page 12839
container_title The Journal of biological chemistry
container_volume 276
creator Bonnet, C
Boucher, D
Lazereg, S
Pedrotti, B
Islam, K
Denoulet, P
Larcher, J C
description The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by ∼3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.
doi_str_mv 10.1074/jbc.M011380200
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04828383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77059848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-cfc589318895f48aa2fd047ab6e1d8689a6b3fa803b2eb09ace50f26462977843</originalsourceid><addsrcrecordid>eNpFkd1rFDEUxYModq2--ih5EEHorDfJfCSP29paYRcXqeBbSDLJbkpm0k5mKvvfm3EXe7lww-V3D4cchN4TWBJoyi_32iw3QAjjQAFeoAUBzgpWkd8v0QKAkkLQip-hNyndQ65SkNfojBDacC6qBXr66p2zg-1HrwK-9H3r-x3-aXdTUKOPPY4Ob7wZ4jjpKdhCpRSNV6Nt8TYvre8T3qy2ZHXxb1xeYNW385NifcB385Hv8TaGwy5Mo-oOR9m36JVTIdl3p3mOft1c313dFusf375frdaFqaAaC-NMxQUjs1dXcqWoa6FslK4taXnNhao1c4oD09RqEMrYChyty5qKpuElO0efj7p7FeTD4Ds1HGRUXt6u1nLeQckpZ5w9kcx-OrIPQ3ycbBpl55OxIajexinJpoFK8JJncHkE87ekNFj3X5mAnFORORX5nEo--HBSnnRn22f8FEMGPp5s-t3-jx-s1D6ave0kbWpJcmeTgv0FCkmS6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77059848</pqid></control><display><type>article</type><title>Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bonnet, C ; Boucher, D ; Lazereg, S ; Pedrotti, B ; Islam, K ; Denoulet, P ; Larcher, J C</creator><creatorcontrib>Bonnet, C ; Boucher, D ; Lazereg, S ; Pedrotti, B ; Islam, K ; Denoulet, P ; Larcher, J C</creatorcontrib><description>The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by ∼3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M011380200</identifier><identifier>PMID: 11278895</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Animals ; Axons ; Axons - metabolism ; Binding Sites ; Binding, Competitive ; Brain ; Brain - metabolism ; Brain Chemistry ; Kinetics ; Life Sciences ; Mice ; Microtubule-Associated Proteins ; Microtubule-Associated Proteins - isolation &amp; purification ; Microtubule-Associated Proteins - metabolism ; Models, Chemical ; Polyglutamic Acid ; Polyglutamic Acid - chemistry ; Polyglutamic Acid - metabolism ; Protein Subunits ; Sodium Chloride ; Sodium Chloride - pharmacology ; Tubulin ; Tubulin - analogs &amp; derivatives ; Tubulin - chemistry ; Tubulin - isolation &amp; purification ; Tubulin - metabolism ; Urea ; Urea - pharmacology</subject><ispartof>The Journal of biological chemistry, 2001-04, Vol.276 (16), p.12839-12848</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-cfc589318895f48aa2fd047ab6e1d8689a6b3fa803b2eb09ace50f26462977843</citedby><cites>FETCH-LOGICAL-c505t-cfc589318895f48aa2fd047ab6e1d8689a6b3fa803b2eb09ace50f26462977843</cites><orcidid>0000-0002-1916-9119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11278895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04828383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, C</creatorcontrib><creatorcontrib>Boucher, D</creatorcontrib><creatorcontrib>Lazereg, S</creatorcontrib><creatorcontrib>Pedrotti, B</creatorcontrib><creatorcontrib>Islam, K</creatorcontrib><creatorcontrib>Denoulet, P</creatorcontrib><creatorcontrib>Larcher, J C</creatorcontrib><title>Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by ∼3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain Chemistry</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins</subject><subject>Microtubule-Associated Proteins - isolation &amp; purification</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Models, Chemical</subject><subject>Polyglutamic Acid</subject><subject>Polyglutamic Acid - chemistry</subject><subject>Polyglutamic Acid - metabolism</subject><subject>Protein Subunits</subject><subject>Sodium Chloride</subject><subject>Sodium Chloride - pharmacology</subject><subject>Tubulin</subject><subject>Tubulin - analogs &amp; derivatives</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - isolation &amp; purification</subject><subject>Tubulin - metabolism</subject><subject>Urea</subject><subject>Urea - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkd1rFDEUxYModq2--ih5EEHorDfJfCSP29paYRcXqeBbSDLJbkpm0k5mKvvfm3EXe7lww-V3D4cchN4TWBJoyi_32iw3QAjjQAFeoAUBzgpWkd8v0QKAkkLQip-hNyndQ65SkNfojBDacC6qBXr66p2zg-1HrwK-9H3r-x3-aXdTUKOPPY4Ob7wZ4jjpKdhCpRSNV6Nt8TYvre8T3qy2ZHXxb1xeYNW385NifcB385Hv8TaGwy5Mo-oOR9m36JVTIdl3p3mOft1c313dFusf375frdaFqaAaC-NMxQUjs1dXcqWoa6FslK4taXnNhao1c4oD09RqEMrYChyty5qKpuElO0efj7p7FeTD4Ds1HGRUXt6u1nLeQckpZ5w9kcx-OrIPQ3ycbBpl55OxIajexinJpoFK8JJncHkE87ekNFj3X5mAnFORORX5nEo--HBSnnRn22f8FEMGPp5s-t3-jx-s1D6ave0kbWpJcmeTgv0FCkmS6Q</recordid><startdate>20010420</startdate><enddate>20010420</enddate><creator>Bonnet, C</creator><creator>Boucher, D</creator><creator>Lazereg, S</creator><creator>Pedrotti, B</creator><creator>Islam, K</creator><creator>Denoulet, P</creator><creator>Larcher, J C</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1916-9119</orcidid></search><sort><creationdate>20010420</creationdate><title>Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation</title><author>Bonnet, C ; Boucher, D ; Lazereg, S ; Pedrotti, B ; Islam, K ; Denoulet, P ; Larcher, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-cfc589318895f48aa2fd047ab6e1d8689a6b3fa803b2eb09ace50f26462977843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain Chemistry</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins</topic><topic>Microtubule-Associated Proteins - isolation &amp; purification</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Models, Chemical</topic><topic>Polyglutamic Acid</topic><topic>Polyglutamic Acid - chemistry</topic><topic>Polyglutamic Acid - metabolism</topic><topic>Protein Subunits</topic><topic>Sodium Chloride</topic><topic>Sodium Chloride - pharmacology</topic><topic>Tubulin</topic><topic>Tubulin - analogs &amp; derivatives</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - isolation &amp; purification</topic><topic>Tubulin - metabolism</topic><topic>Urea</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, C</creatorcontrib><creatorcontrib>Boucher, D</creatorcontrib><creatorcontrib>Lazereg, S</creatorcontrib><creatorcontrib>Pedrotti, B</creatorcontrib><creatorcontrib>Islam, K</creatorcontrib><creatorcontrib>Denoulet, P</creatorcontrib><creatorcontrib>Larcher, J C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, C</au><au>Boucher, D</au><au>Lazereg, S</au><au>Pedrotti, B</au><au>Islam, K</au><au>Denoulet, P</au><au>Larcher, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2001-04-20</date><risdate>2001</risdate><volume>276</volume><issue>16</issue><spage>12839</spage><epage>12848</epage><pages>12839-12848</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by ∼3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>11278895</pmid><doi>10.1074/jbc.M011380200</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1916-9119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-04, Vol.276 (16), p.12839-12848
issn 0021-9258
1083-351X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04828383v1
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Axons
Axons - metabolism
Binding Sites
Binding, Competitive
Brain
Brain - metabolism
Brain Chemistry
Kinetics
Life Sciences
Mice
Microtubule-Associated Proteins
Microtubule-Associated Proteins - isolation & purification
Microtubule-Associated Proteins - metabolism
Models, Chemical
Polyglutamic Acid
Polyglutamic Acid - chemistry
Polyglutamic Acid - metabolism
Protein Subunits
Sodium Chloride
Sodium Chloride - pharmacology
Tubulin
Tubulin - analogs & derivatives
Tubulin - chemistry
Tubulin - isolation & purification
Tubulin - metabolism
Urea
Urea - pharmacology
title Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Binding%20Regulation%20of%20Microtubule-associated%20Proteins%20MAP1A,%20MAP1B,%20and%20MAP2%20by%20Tubulin%20Polyglutamylation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bonnet,%20C&rft.date=2001-04-20&rft.volume=276&rft.issue=16&rft.spage=12839&rft.epage=12848&rft.pages=12839-12848&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M011380200&rft_dat=%3Cproquest_hal_p%3E77059848%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77059848&rft_id=info:pmid/11278895&rfr_iscdi=true