Extraction and characterization of microfibrillated cellulose (MFC) from Rhododendron ponticum isolated using cryocrush pre-treatment and its potential for mycelium cultivation

Rhododendron ponticum (R. ponticum), a rapidly spreading invasive species in Ireland, was investigated for its potential use in creating sustainable bioproducts. This study explored the utilization of R. ponticum biomass as a source of microfibrillated cellulose (MFC) for fungal cultivation. The pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.279 (Pt 3), p.135284, Article 135284
Hauptverfasser: de M. de Lima, Tielidy A., de Lima, Gabriel Goetten, Rouxel, Pierre, Bezerra, Gilberto Silva Nunes, Fehrenbach, Gustavo W., Magalhães, Washington L.E., Nugent, Michael J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhododendron ponticum (R. ponticum), a rapidly spreading invasive species in Ireland, was investigated for its potential use in creating sustainable bioproducts. This study explored the utilization of R. ponticum biomass as a source of microfibrillated cellulose (MFC) for fungal cultivation. The production of MFC was evaluated employing a novel cryocrushing treatment combined with a twin-screw extruder (TSE). The results demonstrated a significant increase in film strength, up to 332.3 MPa, with increasing TSE steps compared to 72.5 MPa in untreated samples. X-ray diffraction (XRD) analysis revealed a decrease in crystallinity from 68.93 % to 59.2 %, following cryocrushing and TSE treatment. Additionally, MFC subjected to the highest TSE treatment (12 steps) was successfully used as a substrate for cultivating Agaricus blazei mushrooms using 0.2 wt%, 0.5 wt%, and 1 wt% MFC over a period of 7 days. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of chitin/chitin glucan within the fungal fibers. This research highlights the potential for transforming the invasive R. ponticum into valuable biocomposite materials. These MFC-fungus composites hold promise for various applications, including sustainable packaging, biodegradable plastics, and eco-friendly textiles.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.135284