A 3D pose estimation framework for preterm infants hospitalized in the Neonatal Unit

Infant pose estimation is crucial in different clinical applications, including preterm automatic general movements assessment. Recent infant pose estimation methods are limited by a lack of real clinical data and are mainly focused on 2D detection. We introduce a stereoscopic system for infants’ 3D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-08, Vol.83 (8), p.24383-24400
Hauptverfasser: Soualmi, Ameur, Ducottet, Christophe, Patural, Hugues, Giraud, Antoine, Alata, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infant pose estimation is crucial in different clinical applications, including preterm automatic general movements assessment. Recent infant pose estimation methods are limited by a lack of real clinical data and are mainly focused on 2D detection. We introduce a stereoscopic system for infants’ 3D pose estimation, based on fine-tuning state-of-the-art 2D human pose estimation networks on a large, real, and manually annotated dataset of infants’ images. Our dataset contains over 88k images, collected from 175 videos from 53 premature infants born
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-023-16333-6