A Tuned Ocean Color Algorithm for the Arctic Ocean: A Solution for Waters With High CDM Content

The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface wherein phytoplankton blooms are common, Arctic coastal waterbodies are among the most affected regions by climate change. Given phytoplankton are critical for energy transfer supporting marine food webs, acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-11, Vol.31 (23), p.38494-38512
Hauptverfasser: LI, Juan, Matsuoka, Atsushi, Hooker, Stanford B., Maritorena, Stéphane, Pang, Xiaoping, Babin, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface wherein phytoplankton blooms are common, Arctic coastal waterbodies are among the most affected regions by climate change. Given phytoplankton are critical for energy transfer supporting marine food webs, accurate estimation of chlorophyll a concentration (Chl), which is frequently used as a proxy of phytoplankton biomass, is critical for improving our knowledge of the Arctic marine ecosystem and its response to the ongoing climate change. Due to the unique and complex bio-optical properties of the AO, efforts are still needed to obtain more accurate Chl estimates, especially for coastal waters with high colored detrital material (CDM) content. In this study, we optimized the the Garver-Siegel-Maritorena (GSM) algorithm, using an Arctic bio-optical dataset comprised of seven wavelengths (the original GSM wavelengths plus 625 nm). Results suggested that our tuned algorithm, denoted GSMA, outperformed an alternative AO GSM algorithm denoted AO.GSM, but the accuracy of Chl estimates was only improved by 8%. In addition, GSMA showed appreciable robustness when assessed using a satellite image and two non-Arctic coastal datasets.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.500340