A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD

In this paper we blend two lattice-Boltzmann (LB) numerical schemes with an a posteriori Multi-dimensional Optimal Order Detection (MOOD) paradigm to solve hyperbolic systems of conservation laws in 1D and 2D. The first LB scheme is robust to the presence of shock waves but lacks accuracy on smooth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2025-01, Vol.521, p.113570, Article 113570
Hauptverfasser: Kozhanova, Ksenia, Zhao, Song, Loubère, Raphaël, Boivin, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we blend two lattice-Boltzmann (LB) numerical schemes with an a posteriori Multi-dimensional Optimal Order Detection (MOOD) paradigm to solve hyperbolic systems of conservation laws in 1D and 2D. The first LB scheme is robust to the presence of shock waves but lacks accuracy on smooth flows. The second one has a second-order of accuracy but develops non-physical oscillations when solving steep gradients. The MOOD paradigm produces a hybrid LB scheme via smooth and positivity detectors allowing to gather the best properties of the two LB methods within one scheme. Indeed, the resulting scheme presents second order of accuracy on smooth solutions, essentially non-oscillatory behaviour on irregular ones, and, an ‘almost fail-safe’ property concerning positivity issues. The numerical results on a set of sanity test cases and demanding ones are presented assessing the appropriate behaviour of the hybrid LBMOOD scheme in 1D and 2D.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2024.113570