Easy-plane ferromagnetic ordering and crystal-field ground state in the Kondo lattice CeCuSi

We report the successful growth of CeCuSi single crystals using a metallic flux method and the physical properties using structural, magnetic, electrical transport, optical, and heat capacity measurements. CeCuSi crystallizes in a hexagonal-bar shape, and single crystal x-ray diffraction confirms th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2024-12
Hauptverfasser: Jin, Hanshang, Moulding, Owen, Fettinger, James C, Gao, Yingzheng, Klavins, Peter, Marie-Aude Méasson, Taufour, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the successful growth of CeCuSi single crystals using a metallic flux method and the physical properties using structural, magnetic, electrical transport, optical, and heat capacity measurements. CeCuSi crystallizes in a hexagonal-bar shape, and single crystal x-ray diffraction confirms the ZrBeSi-type structure (space group \(P6_{3}/mmc\)). CeCuSi orders ferromagnetically below \(T_\textrm{C}=15.5\) K with easy magnetization direction within the basal plane. The Ce\(^{3+}\) ions are situated within a triangular lattice with a point group of \(D_{3d}\). We perform a detailed crystalline electric field (CEF) analysis of the anisotropic magnetic susceptibility, the Schottky anomaly in heat capacity, and the Raman-active excitations. The results indicate a ground state doublet with magnetic moment primarily in the basal plane, and a ferromagnetic interaction along both directions. The exponential behavior in resistivity and in heat capacity below \(T_\textrm{C}\) can also be well explained by the ferromagnetic magnon model. We found that CeCuSi does not exhibit the CEF hard axis ordering observed in many ferromagnetic Kondo lattice (FM-KL) compounds. Our CEF analysis suggests that the exchange interactions along both axes are ferromagnetic, potentially explaining the absence of hard-axis ordering.
ISSN:2469-9950
2331-8422
2469-9969
DOI:10.48550/arxiv.2411.12054