Experimental study and numerical modeling of mixing by air injection in yield stress fluids using the OpenFOAM software
Mixing by gas injection is an operation used in industrial processes such as wastewater treatment, metallurgy, or methanization in which pressurized gas is injected into a fluid in order to reduce concentrations and temperatures gradients. This study demonstrates how the CFD toolbox OpenFOAM can be...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2022-02, Vol.68 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mixing by gas injection is an operation used in industrial processes such as wastewater treatment, metallurgy, or methanization in which pressurized gas is injected into a fluid in order to reduce concentrations and temperatures gradients. This study demonstrates how the CFD toolbox OpenFOAM can be used to simulate such flows. Experimental measurements and observations have been performed on a pilot‐scale reactor where pressurized air is injected in a yield stress fluid. The volume of fluid method and an adaptive mesh with refinement at the interface have been used to track the gas inclusions. The numerical model accuracy has been assessed by comparing experimental and numerical results related to the bubble's frequency, dimensions, and rising velocities as well as the fluid recirculation, yielded, and unyielded regions in the tank. The influence of injection parameters such as the injection flow rate and the fluid rheological parameters has been quantified. |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.17442 |