Subsoil compressibility effect in an end bearing scaled pile-supported embankment, investigation of the load transfer mechanism
This paper investigates the effect of subsoil compressibility on the efficiency of piles supporting embankments. The analysis was carried out on a 1:10 scaled model comprising 36 piles and using selected foam to simulate the behavior of the compressible soil. Experimental tests were carried out to a...
Gespeichert in:
Veröffentlicht in: | Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) 2022-02, Vol.7 (1), Article 75 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the effect of subsoil compressibility on the efficiency of piles supporting embankments. The analysis was carried out on a 1:10 scaled model comprising 36 piles and using selected foam to simulate the behavior of the compressible soil. Experimental tests were carried out to assess the efficiency of these piles for two different thicknesses of compressible soil. Following this, numerical modeling of the reduced model was carried out. Thus, the embankment was considered to be elastic perfectly plastic material. For compressible soil and piles, the model adopted is linear elastic. The numerical analysis confirmed the experimental findings and provided a good understanding of the effect undergone by the load transfer mechanism following a variation of the subsoil stiffness. Especially it showed that the subsoil compressibility affects load transfer pile efficiency but almost without effect on the critical ratio of the pile clear spacing to embankment height. Besides, this study showed that the used scaled model reproduces well the characteristic features of the load transfer mechanism in pile-supported embankments. |
---|---|
ISSN: | 2364-4176 2364-4184 |
DOI: | 10.1007/s41062-021-00672-0 |