GDF5 as a rejuvenating treatment for age-related neuromuscular failure

Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2024-11, Vol.147 (11), p.3834-3848
Hauptverfasser: Massiré, Traoré, Chiara, Noviello, Amélie, Vergnol, Christel, Gentil, Marius, Halliez, Lucile, Saillard, Maxime, Gelin, Anne, Forand, Mégane, Lemaitre, Zoheir, Guesmia, Bruno, Cadot, Eriky, Caldas, Benjamin, Marty, Nathalie, Mougenot, Julien, Messéant, Laure, Strochlic, Jeremy, Sadoine, Lofti, Slimani, Ariane, Jolly, Pierre, De la Grange, Jean-Yves, Hogrel, France, Pietri-Rouxel, Sestina, Falcone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in Tibialis Anterior (TA) muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human Vastus Lateralis muscle biopsies from adult young (21-42 years) and aged (77-80 years) donors, quantifying the molecular markers modified by GDF5 overexpression (OE) in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann Cells (SCs). We established a pre-clinical study by treating chronically (for 4 months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 OE in the old TAs promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000 µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and a better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 OE preserved neuromuscular junction (NMJ) morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of re-innervation-related genes, in particular markers of SCs (fold change 3.19 for S100b gene expression, P = 0.0101). To further characterize the molecular events induced by GDF5 OE during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a "rejuvenating" transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 OE (P < 0.05). Towards a pre-clinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17,8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing NMJ degeneration (7,96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-relate
ISSN:0006-8950
1460-2156
1460-2156
DOI:10.1093/brain/awae107