Kahan Discretizations of Skew-Symmetric Lotka-Volterra Systems and Poisson Maps

The Kahan discretization of the Lotka-Volterra system, associated with any skew-symmetric graph Γ, leads to a family of rational maps, parametrized by the step size. When these maps are Poisson maps with respect to the quadratic Poisson structure of the Lotka-Volterra system, we say that the graph Γ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical physics, analysis, and geometry analysis, and geometry, 2021-09, Vol.24 (3), Article 26
Hauptverfasser: Evripidou, C. A., Kassotakis, P., Vanhaecke, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Kahan discretization of the Lotka-Volterra system, associated with any skew-symmetric graph Γ, leads to a family of rational maps, parametrized by the step size. When these maps are Poisson maps with respect to the quadratic Poisson structure of the Lotka-Volterra system, we say that the graph Γ has the Kahan-Poisson property. We show that if Γ is connected, it has the Kahan-Poisson property if and only if it is a cloning of a graph with vertices 1 , 2 , … , n , with an arc i → j precisely when i < j , and with all arcs having the same value. We also prove a similar result for augmented graphs, which correspond with deformed Lotka-Volterra systems and show that the obtained Lotka-Volterra systems and their Kahan discretizations are superintegrable as well as Liouville integrable.
ISSN:1385-0172
1572-9656
DOI:10.1007/s11040-021-09399-x