New high-quality paleomagnetic data from the Borborema Province (NE Brazil): Refinement of the APW path of Gondwana in the Early Cambrian

•A new high-quality paleomagnetic pole for the ~538 Ma Monteiro dykes from the Borborema Province.•Primary remanence is supported by baked contact tests and the Monteiro pole passes a reversal test.•Rapid oscillations of the apparent polar wander path for the Gondwana are suggested between 560 and 5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precambrian research 2021-07, Vol.360, p.106243, Article 106243
Hauptverfasser: Antonio, Paul Yves Jean, Trindade, Ricardo Ivan Ferreira, Giacomini, Bruno, Brandt, Daniele, Tohver, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A new high-quality paleomagnetic pole for the ~538 Ma Monteiro dykes from the Borborema Province.•Primary remanence is supported by baked contact tests and the Monteiro pole passes a reversal test.•Rapid oscillations of the apparent polar wander path for the Gondwana are suggested between 560 and 500 Ma. The Neoproterozoic-Paleozoic transition (~541 Ma) was a turning point in Earth’s history resulting in great biological changes between the microbial Precambrian life and the Ediacaran biotic revolution with the occupation of the sedimentary substrate, the dawn of biomineralization and the appearance of the earliest multicellular organisms. In parallel, this period is marked by a large plate reorganization leading to the assembly of Gondwana and by major climatic changes (extreme glacial events). Due in part to a poor paleomagnetic database for the different cratons in the Ediacarian-Cambrian times, the global paleogeography at that time remains controversial. In this study we present a new high-quality paleomagnetic pole (R = 7) for the Monteiro dyke swarm in the Borborema Province (NE Brazil) located at 18.2°S and 344.9°E (A95 = 11.7° K = 9.3). They are fine-grained hornblende dolerite dated by U-Pb on zircon at ~538 Ma. Rock magnetic data indicate that magnetite and pyrrhotite are the main remanence carriers. Positive baked-contact tests support the primary remanence obtained for these dykes (19 sites). A positive reversal test (classified C) was also obtained from the 14 sites with negative inclination and the 5 sites with positive inclination, indicating that the paleosecular variation was eliminated. Our new key pole is not consistent with the classical apparent polar wander path of the Gondwana which consists of a long track from a southern polar position at ~590 Ma to an equatorial position at ~520 Ma, and suggests instead rapid and small oscillations of the APW, after the end of the large IITPW at ca. 560 Ma. These TPWs are supposedly caused by changes in the inertia tensor of the Earth due to internal mass redistribution, related to rapid changes in subduction velocity. Links of these rapid oscillations and the timing of the Cambrian radiation could be crucial to understand the early history of animal life
ISSN:0301-9268
1872-7433
DOI:10.1016/j.precamres.2021.106243