Differential fields and geodesic flows II: Geodesic flows of pseudo-Riemannian algebraic varieties
We define the notion of a smooth pseudo-Riemannian algebraic variety ( X , g ) over a field k of characteristic 0, which is an algebraic analogue of the notion of Riemannian manifold and we study, from a model-theoretic perspective, the algebraic differential equation describing the geodesics on ( X...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2019-03, Vol.230 (2), p.527-561 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the notion of a smooth pseudo-Riemannian algebraic variety (
X
,
g
) over a field
k
of characteristic 0, which is an algebraic analogue of the notion of Riemannian manifold and we study, from a model-theoretic perspective, the algebraic differential equation describing the geodesics on (
X
,
g
).
When
k
is the field of real numbers, we prove that if the real points of
X
are Zariski-dense in
X
and if the real analytification of (
X
,
g
) is a compact Riemannian manifold with negative curvature, then the algebraic differential equation describing the geodesics on (
X
,
g
) is absolutely irreducible and its generic type is orthogonal to the constants. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-018-1820-z |