Differential fields and geodesic flows II: Geodesic flows of pseudo-Riemannian algebraic varieties

We define the notion of a smooth pseudo-Riemannian algebraic variety ( X , g ) over a field k of characteristic 0, which is an algebraic analogue of the notion of Riemannian manifold and we study, from a model-theoretic perspective, the algebraic differential equation describing the geodesics on ( X...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2019-03, Vol.230 (2), p.527-561
1. Verfasser: Jaoui, Rémi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the notion of a smooth pseudo-Riemannian algebraic variety ( X , g ) over a field k of characteristic 0, which is an algebraic analogue of the notion of Riemannian manifold and we study, from a model-theoretic perspective, the algebraic differential equation describing the geodesics on ( X , g ). When k is the field of real numbers, we prove that if the real points of X are Zariski-dense in X and if the real analytification of ( X , g ) is a compact Riemannian manifold with negative curvature, then the algebraic differential equation describing the geodesics on ( X , g ) is absolutely irreducible and its generic type is orthogonal to the constants.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-018-1820-z