In situ photoemission spectroscopies to reveal surface transfer doping on hydrogenated milled nanodiamonds

Nanodiamonds (ND) exhibit exceptional chemical, electronic, thermal, and optical properties, making them valuable for applications in nanomedicine, energy, quantum technologies, advanced lubricants, and polymer composites. Surface analysis techniques such as X-ray photoemission spectroscopy (XPS), u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2024-11, Vol.230, p.119668, Article 119668
Hauptverfasser: Njel, Christian, Girard, Hugues A., Frégnaux, Mathieu, Aureau, Damien, Arnault, Jean-Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanodiamonds (ND) exhibit exceptional chemical, electronic, thermal, and optical properties, making them valuable for applications in nanomedicine, energy, quantum technologies, advanced lubricants, and polymer composites. Surface analysis techniques such as X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS) and reflection electron energy loss spectroscopy (REELS) are critical for understanding the surface properties of nanomaterials, including nanodiamonds. This study investigates hydrogenated milled nanodiamonds (H-MND) by integrating UPS and XPS measurements with REELS. Through in situ annealing within an ultra-high vacuum (UHV) chamber, we examine the impact of surface termination on surface conductivity, focusing on the role of adsorbates. Our findings reveal that a surface transfer doping mechanism, akin to that observed in bulk diamond, governs a pseudo p-type conductivity in H-MND. The conductivity dependence on ambient exposure, water, and subsequent annealing demonstrates its reversibility. The study also discusses the nature of electron acceptors and the influence of ND facets on conductivity. [Display omitted]
ISSN:0008-6223
DOI:10.1016/j.carbon.2024.119668