Infinitely many exotic Lagrangian tori in higher projective spaces
In de Velloso Vianna (J Topol 9(2):535-551, 2016), Vianna constructed infinitely many exotic Lagrangian tori in $$\mathbb {P}^2$$ P 2 . We lift these tori to higher dimensional projective spaces and show that they remain non-symplectomorphic. Our proof is elementary except for an application of the...
Gespeichert in:
Veröffentlicht in: | Journal of fixed point theory and applications 2024-12, Vol.26 (4), Article 46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In de Velloso Vianna (J Topol 9(2):535-551, 2016), Vianna constructed infinitely many exotic Lagrangian tori in $$\mathbb {P}^2$$ P 2 . We lift these tori to higher dimensional projective spaces and show that they remain non-symplectomorphic. Our proof is elementary except for an application of the wall-crossing formula of Pascaleff and Tonkonog (Adv Math 361:106850, 2020). |
---|---|
ISSN: | 1661-7738 1661-7746 |
DOI: | 10.1007/s11784-024-01137-4 |