Infinitely many exotic Lagrangian tori in higher projective spaces

In de Velloso Vianna (J Topol 9(2):535-551, 2016), Vianna constructed infinitely many exotic Lagrangian tori in $$\mathbb {P}^2$$ P 2 . We lift these tori to higher dimensional projective spaces and show that they remain non-symplectomorphic. Our proof is elementary except for an application of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2024-12, Vol.26 (4), Article 46
Hauptverfasser: Chanda, Soham, Hirschi, Amanda, Wang, Luya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In de Velloso Vianna (J Topol 9(2):535-551, 2016), Vianna constructed infinitely many exotic Lagrangian tori in $$\mathbb {P}^2$$ P 2 . We lift these tori to higher dimensional projective spaces and show that they remain non-symplectomorphic. Our proof is elementary except for an application of the wall-crossing formula of Pascaleff and Tonkonog (Adv Math 361:106850, 2020).
ISSN:1661-7738
1661-7746
DOI:10.1007/s11784-024-01137-4