Uncertainty quantification: For an IAQ and energy performance assessment method for smart ventilation strategies
In new low-energy buildings or buildings after thermal refurbishment, the envelope high airtightness could have an impact on air renewal and could decrease the indoor air quality (IAQ). In this context smart-ventilation systems with variable airflows could play a role in providing better IAQ without...
Gespeichert in:
Veröffentlicht in: | Building and environment 2024-12, Vol.266, p.112115, Article 112115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In new low-energy buildings or buildings after thermal refurbishment, the envelope high airtightness could have an impact on air renewal and could decrease the indoor air quality (IAQ). In this context smart-ventilation systems with variable airflows could play a role in providing better IAQ without compromising the energy performance.
However, smart-ventilation strategies are quite recent, and their benefits need to be clearly quantified. This article, proposes to quantify the uncertainty of a recent multi-criteria performance assessment method, using global RBD-FAST sensitivity analysis. The impact of the pollutant emissions scenarios, model input parameters and ventilation strategies is assessed.
Five ventilation systems were studied: two constant airflow, one humidity-controlled and two humidity/CO2 controlled, applied on a French low-energy house. 2500 simulations were performed to calculate 504 sensitivity indices across 12 input variables and 9 output performance indicators. The sensitivity analysis shows that occupant bio-effluent, formaldehyde and PM2.5 emissions rates are responsible for 11 %–87 % of the uncertainty for the IAQ performance indicators. The PM2.5 deposition velocity parameter is responsible for 50 % of the uncertainty on the PM2.5 indicator, which was an unknown impact. In addition, the benefits of humidity-controlled ventilation were highlighted regarding energy performance, with, in average, 20 % lower heat-loss compared to constant airflow ventilation. Moreover, smart-ventilation provides clear IAQ benefits without drastically increasing the energy demand. This work demonstrates the potential of the proposed evaluation method for ventilation performance assessment.
•PM2.5 deposition velocity is the main factor influencing the PM2.5 IAQ indicator.•Short-term IAQ indicators provide no additional information to long-term indicators.•Reference emission scenario does not always give median or average results.•Humidity-based control offers, in average, 20 % less heat losses than constant airflow.•With smart ventilation, there is an IAQ benefit on the CO2, but heat recovery is need. |
---|---|
ISSN: | 0360-1323 |
DOI: | 10.1016/j.buildenv.2024.112115 |