Shape optimization of a thermal insulation problem

We study a shape optimization problem involving a solid K ⊂ R n that is maintained at constant temperature and is enveloped by a layer of insulating material Ω which obeys a generalized boundary heat transfer law. We minimize the energy of such configurations among all ( K , Ω ) with prescribed meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 186
Hauptverfasser: Bucur, Dorin, Nahon, Mickaël, Nitsch, Carlo, Trombetti, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a shape optimization problem involving a solid K ⊂ R n that is maintained at constant temperature and is enveloped by a layer of insulating material Ω which obeys a generalized boundary heat transfer law. We minimize the energy of such configurations among all ( K , Ω ) with prescribed measure for K and Ω , and no topological or geometrical constraints. In the convection case (corresponding to Robin boundary conditions on ∂ Ω ) we obtain a full description of minimizers, while for general heat transfer conditions, we prove the existence and regularity of solutions and give a partial description of minimizers.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-022-02298-1