Adaptive Asynchronous Control Using Meta-Learned Neural Ordinary Differential Equations
Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2024-01, Vol.40, p.403-420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g ., varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2023.3326350 |