Semi-Simplicity of Invariant Holonomic Systems on a Reductive Lie Algebra
Let$\germ{g}$be a reductive, complex Lie algebra, with adjoint group G, let G act on the ring of differential operators${\cal D}(\germ{g})$via the adjoint action and write$\tau \colon \germ{g}\rightarrow {\cal D}(\germ{g})$for the differential of this action. Fix$\lambda \in \germ{h}^{\ast}$. Genera...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 1997-10, Vol.119 (5), p.1095-1117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let$\germ{g}$be a reductive, complex Lie algebra, with adjoint group G, let G act on the ring of differential operators${\cal D}(\germ{g})$via the adjoint action and write$\tau \colon \germ{g}\rightarrow {\cal D}(\germ{g})$for the differential of this action. Fix$\lambda \in \germ{h}^{\ast}$. Generalizing work of Hotta and Kashiwara, we prove that the invariant holonomic system${\cal N}_{\lambda}={\cal D}(\germ{g})/({\cal D}(\germ{g})\tau (\germ{g})+\sum_{p\in S(\germ{g})^{G}}{\cal D}(\germ{g})(p-p(\lambda)))$is is semisimple. The simple summands of${\cal N}_{\lambda}$are parametrized by the irreducible representations of$W_{\lambda}$, the stabilizer of λ in the Weyl group. Consequently, the subcategory generated by${\cal N}_{\lambda}$is equivalent to the category of finite dimensional representations of$W_{\lambda}$. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.1997.0030 |