Higher symmetries of powers of the Laplacian and rings of differential operators

We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries $\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$ . The connection is made through the construction of a hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2017-04, Vol.153 (4), p.678-716
Hauptverfasser: Levasseur, T, Stafford, J T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries $\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$ . The connection is made through the construction of a highest-weight representation of $\mathfrak{g}$ via the ring of differential operators ${\mathcal{D}}(X)$ on the singular scheme $X=(\mathtt{F}^{r}=0)\subset \mathbb{C}^{n}$ , for $\mathtt{F}=\sum _{j=1}^{n}X_{i}^{2}\in \mathbb{C}[X_{1},\ldots ,X_{n}]$ . In particular, we prove that $U(\mathfrak{g})/K_{r}\cong \mathscr{S}(\Box ^{r})\cong {\mathcal{D}}(X)$ for a certain primitive ideal $K_{r}$ . Interestingly, if (and only if) $n$ is even with $r\geqslant n/2$ , then both $\mathscr{S}(\Box ^{r})$ and its natural module ${\mathcal{A}}=\mathbb{C}[\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n},\ldots ,\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n}]/(\Box ^{r})$ have a finite-dimensional factor. The same holds for the ${\mathcal{D}}(X)$ -module ${\mathcal{O}}(X)$ . We also study higher-dimensional analogues $M_{r}=\{x\in A:\Box ^{r}(x)=0\}$ of the module of harmonic elements in $A=\mathbb{C}[X_{1},\ldots ,X_{n}]$ and of the space of ‘harmonic densities’. In both cases we obtain a minimal $\mathfrak{g}$ -representation that is closely related to the $\mathfrak{g}$ -modules ${\mathcal{O}}(X)$ and ${\mathcal{A}}$ . Essentially all these results have real analogues, with the Laplacian replaced by the d’Alembertian $\Box _{p}$ on the pseudo-Euclidean space $\mathbb{R}^{p,q}$ and with $\mathfrak{g}$ replaced by the real Lie algebra $\mathfrak{so}(p+1,q+1)$ .
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X16008149