Tannaka–Krein Reconstruction and Ergodic Actions of Easy Quantum Groups

We give a new alternative version of the reconstruction procedure for ergodic actions of compact quantum groups and we refine it to include characterizations of (braided commutative) Yetter–Drinfeld C*-algebras. We then use this to construct families of ergodic actions of easy quantum groups out of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-04, Vol.399 (1), p.105-172
Hauptverfasser: Freslon, Amaury, Taipe, Frank, Wang, Simeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new alternative version of the reconstruction procedure for ergodic actions of compact quantum groups and we refine it to include characterizations of (braided commutative) Yetter–Drinfeld C*-algebras. We then use this to construct families of ergodic actions of easy quantum groups out of combinatorial data involving partitions and study them. Eventually, we use this categorical point of view to show that the quantum permutation group cannot act ergodically on a classical connected compact space, thereby answering a question of D. Goswami and H. Huang.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04555-y