Optimization of integrated phytoremediation system (IPS) for enhanced lead removal and restoration of soil microbial activities

Improving phytoremediation efficiency in lead (Pb) contaminated soil through either bacterial or fungal inoculants have extensively been studied with different successes and limitations. In this study, co-application of bacteria and fungi have been investigated for development of an integrated phyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2021-08, Vol.277, p.130243-130243, Article 130243
Hauptverfasser: Manzoor, Maria, Gul, Iram, Manzoor, Aamir, Kallerhoff, Jean, Arshad, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving phytoremediation efficiency in lead (Pb) contaminated soil through either bacterial or fungal inoculants have extensively been studied with different successes and limitations. In this study, co-application of bacteria and fungi have been investigated for development of an integrated phytoremediation system (IPS) for efficient Pb removal and restoration of soil microbial and enzymatic activities in degraded soil. For this purpose, Pb tolerant bacterial and fungal strains were firstly analyzed for antifungal and antibacterial activities through disc diffusion method. Afterwards, the co-inoculation studies were performed to investigate the effects on phytoavailability and uptake of Pb by Pelargonium hortorum through soil incubation and pot culture experiments, respectively. Results indicated significant (p 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.130243