Introducing Molecular Functionalities within High Surface Area Nanostructured ITO Electrodes through Diazonium Electrografting

Efficient and homogeneous functionalization of 3D nanostructured transparent ITO electrodes was reproducibly achieved by electrochemical reduction of in‐situ generated free‐base porphyrin diazonium salts. The resulting modified electrodes were characterized by cyclic voltammetry and voltabsorptometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2018, Vol.5 (13), p.1625-1630
Hauptverfasser: Kim, Yee‐seul, Fournier, Sophie, Lau-Truong, Stéphanie, Decorse, Philippe, Devillers, Charles, Lucas, Dominique, Harris, Kenneth, Limoges, Benoît, Balland, Véronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient and homogeneous functionalization of 3D nanostructured transparent ITO electrodes was reproducibly achieved by electrochemical reduction of in‐situ generated free‐base porphyrin diazonium salts. The resulting modified electrodes were characterized by cyclic voltammetry and voltabsorptometry, UV‐visible absorption, resonance Raman and XPS. The overall results strongly support the formation of covalently linked electroactive porphyrin oligomers on the ITO surface, that are highly stable towards desorption or hydrolysis in organic as well as mild hydrolytic conditions. Further metalation by zinc ions was quantitatively achieved, thus opening new opportunities for the preparation of robust high‐surface area photoelectrodes with adjustable properties.
ISSN:2196-0216
2196-0216
DOI:10.1002/celc.201800418